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Abstract

 Brominated activated carbon (AC-Br), which was produced from coconut shell activated carbon (AC) and brominated 
by wet way with elemental bromine, was determined as a material with super high adsorption capacity of mercury vapor. 
But in real exhaust gases, there are many components such as SO2, NOx, CO, CO2, HCl, H2O can influence on adsorption 
ability of the AC-Br. In this paper, these influences were studied and compared them between initial AC and AC-Br. Each 
component has different effect on AC and AC-Br and followed by its particular mechanism.
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1. Introduction

 Mercury emissions are the source of serious health 
concerns. Worldwide mercury emissions from human 
activities are estimated to be 1000 - 6000 tones per 
year, which accounts for 30-55% of global atmospheric 
mercury emissions (Lee et al., 2006). Anthropogenic 
sources of mercury are numerous. Mercury is produced 
by the mining and smelting of cinnabar ore, it is used 
in chloralkali plants, in paints, in electrical switching 
equipment and batteries, in thermometers and medical 
equipment, in mercury vacuum apparatus, as a catalyst in 
chemical processes, in mercury quartz and luminescent 
lamps, in the production and use of high explosives  
using mercury fulminate, in copper and silver amalgams 
in tooth-filling materials, and as fungicides in agriculture 
(WHO, 2000). Mercury entering the atmosphere is 
mainly from combustion sources, including medical 
waste incinerators, municipal solid waste incinerators 
and coal-fired utilities. The largest source is believed 
from coal-fired power plants. U.S. coal-fired power 
plants emitted 44.2 tones of mercury into the air in 2004, 
which accounts for 40% of the total U.S. anthropogenic 
emissions. Canadian power plants emitted 1.96 tones 
of mercury in 2004, which accounts for 25% of total 
Canadian anthropogenic emissions (IJC, 2006).
 Currently, two methods exist to reduce mercury 
emissions from combustion sources: reduce the mercury 
content in the combusted materials or use advanced flue 
gas treatment technologies to capture the mercury (Yang 
et al., 2007). Numerous mercury adsorbents such as 

coal chars (Wu et al., 2000), calcium sorbents (Ghorishi 
and Sedman, 1998), petroleum coke (Lee et al., 2006), 
zeolites (Morency, 2002), fly ash (Senior et al., 2004), 
activated carbon and chemical treated activated carbon 
(Yang et al., 2007) have been studied. Among them, 
activated carbon impregnated halogens or sulfur have 
shown the more extensively for capturing mercury 
vaporthan others. At this time, brominated activated 
carbon appears to be the best performing mercury  
adsorbent. The bromination causes enhanced and faster 
mercury adsorption. The adsorption capacity increases 
80 times to 0.2 mg/g when bromination is 0.33% (Sun 
et al., 2006). Liu et al. (2007) used bromine vapor 
injected to exhaust gas from coal electric power plant 
to help enhancing efficiency of mercury vapor removal 
to more than 90%.
 The mercury adsorption depends on several factors 
(Yang et al., 2007). The surface functional groups, 
such as bromine, chlorine and sulfur species, can 
strongly affect mercury adsorption through the chemical  
adsorption mechanism. Sorbent properties, such 
as size, shape, surface area, micropore volume and 
pore size distribution may affect sorbent adsorption  
performance also. Besides, flue gas chemical composition 
is the important factor that significantly affects mercury 
adsorption.
 In this paper, theinfluences of the main components 
in exhaust gas, including SO2, NOx, CO, CO2, HCl, 
H2Oon mercury vapor adsorption of brominated  
activated carbon are studied. 
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Abstract

The aim of the present study was to standardize and to assess the predictive value of the cytogenetic analysis
by Micronucleus (MN) test in fish erythrocytes as a biomarker for marine environmental contamination. Micronucleus
frequency baseline in erythrocytes was evaluated in and genotoxic potential of a common chemical was determined
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1. Introduction

In India, about 200 tons of mercury and its
compounds are introduced into the environment
annually as effluents from industries (Saffi, 1981).
Mercuric chloride has been used in agriculture as a
fungicide, in medicine as a topical antiseptic and
disinfectant, and in chemistry as an intermediate in
the production of other mercury compounds. The
contamination of aquatic ecosystems by heavy
metals and pesticides has gained increasing attention
in recent decades. Chronic exposure to and
accumulation of these chemicals in aquatic biota
can result in tissue burdens that produce adverse
effects not only in the directly exposed organisms,
but also in human beings.

Fish provides a suitable model for monitoring
aquatic genotoxicity and wastewater quality
because of its ability to metabolize xenobiotics and
accumulated pollutants. A micronucleus assay has
been used successfully in several species (De Flora,
et al., 1993, Al-Sabti and Metcalfe, 1995). The
micronucleus (MN) test has been developed
together with DNA-unwinding assays as
perspective methods for mass monitoring of
clastogenicity and genotoxicity in fish and mussels
(Dailianis et al., 2003).

The MN tests have been successfully used as
a measure of genotoxic stress in fish, under both

laboratory and field conditions. In 2006 Soumendra
et al., made an attempt to detect genetic biomarkers
in two fish species, Labeo bata and Oreochromis
mossambica, by MN and binucleate (BN)
erythrocytes in the gill and kidney erythrocytes
exposed to thermal power plant discharge at
Titagarh Thermal Power Plant, Kolkata, India.

The present study was conducted to determine
the acute genotoxicity of the heavy metal compound
HgCl2 in static systems. Mercuric chloride is toxic,
solvable in water hence it can penetrate the aquatic
animals. Mutagenic studies with native fish species
represent an important effort in determining the
potential effects of toxic agents. This study was
carried out to evaluate the use of the micronucleus
test (MN) for the estimation of aquatic pollution
using marine edible fish under lab conditions.

2. Materials and methods

2.1. Sample Collection

The fish species selected for the present study
was collected from Pudhumadam coast of Gulf of
Mannar, Southeast Coast of India. Therapon
jarbua belongs to the order Perciformes of the
family Theraponidae. The fish species, Therapon
jarbua (6-6.3 cm in length and 4-4.25 g in weight)
was selected for the detection of genotoxic effect
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gas flow rate was 0.5 L/min. Outlet mercury vapor  
(after adsorption) in each fraction was fixed in oxidative  
solution of KMnO4 dissolved in nitric acid and  
determined by AAS connected with cool vapor  
generator (APHA, 1995). 
 The influencing gas was supplied through gas spike 
gate and then mixed with clean air to meet designed 
concentration, then mixed with mercury vapor current 
before contact with adsorption column. The apparatus 
for this investigation was described in Fig. 2.
 The dynamic equilibrium adsorption capacity was 
determined in the conditions mentioned above. At each 
concentration level of spiked gases, adsorption process 
was carried out continuously and after every 60 min 
adsorption (equal 30 L gas passed the adsorption 
column) the fractions were taken. The examination 
was continued until the mercury concentration in the 
effluent almost equal the inlet concentration. Average 
mercury concentration in the fractions was determined. 
The dynamic equilibrium adsorption capacity (qe) was 
calculated by following formula:

        =  Co . tT .w - ∑iCi . ti .w  (mg/g)  (1)

2. Materials and Methods

2.1. Brominated AC and spiking gases

 Brominated AC was prepared from coconut shell 
AC soaking in lightly acidic solution of elemental 
bromine for 3 hours at temperature around 45oC and 
normal pressure. The ratio of bromine per AC was 
3%. After bromination, the material was washedby  
deionized water and dried at 105oC for 4 hours.
 Spiking gases were commercial standard gases 
and spiked to mercury vapor current by a standard  
equipment as described in Fig. 1.

2.2. Experimental methods

 The AC or brominated AC (0.5-1.0 mm of size) 
was mixed with quartz sand with the same size under 
the weight ratio of 1:10 and filled into adsorption  
columns which were used for determination of dynamic  
adsorption capacity (Tran Hong Con et al., 2015). 
Experiments’conditions of inlet mercury vapor  
concentration was 32.267 mg/m3, adsorption  
temperature was 50oC, adsorbent quantity was 0.2 g, 
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 Where Co is inlet mercury concentration (mg/m3), Ci 
is outlet mercury  concentration in fraction i (mg/m3), tT is 
total adsorption time (min), ti is the time of each fraction 
(min), w is flow rate (L/min) and m is adsorption  
material quantity (g).

3. Results and Discussion

3.1. Influence of SO2 concentration on dynamic  
equilibriumadsorption of mercury vapor on AC and  
AC-Br

 The dynamic equilibrium adsorption of original AC 
and AC-Br was carried out according to the experimental 
procedure presented in the section 2.2 with spiked SO2 
concentration increased from zero to 1000 ppm and 
calculated following the formula (1). Investigation 
results are reported at Figs. 3 and 4.
 According to the results showed in Figs. 3 and 4, the 
influence of SO2 concentration on adsorption capacity 
of mercury vapor on AC was different. For original AC, 
the adsorption capacityof mercury vapor was increased 
significantly when spiked SO2 concentration increased 
from zero to 100 ppm; then decreased when SO2  
concentration increased until to 1000 ppm. The reason 
of this phenomenon assumed that, at the concentration 
lower than 100 ppm, when SO2 contacted with AC 
surface, the reductive functional groups in AC possibly 
reduced  SO2 to form elemental sulfur. Elemental sulfur 
itself was strong adsorption center of mercury vapor. 
But at the higher concentration, SO2 can react with 
elemental sulfur to form deferent disulfur compounds 
which have lower affinity with mercury vapor. So the 
adsorption capacity of the material (AC) was then 
decreased.

 In the case of AC-Br, the increase of SO2  
concentration decreased mercury vapor adsorption 
capacity of the material. Until now, the reason of this 
phenomenon was not clear yet. It seemed reasonable to 
assume that (1) after bromination, strongest reductive 
groups in the AC surface were oxidized, so they could 
not reduce SO2 to elemental sulfur and (2) in the space 
of high concentration of SO2 and partly brominated AC, 
neutral SO2 molecules could massively adsorbed on the 
AC surface; those obstruct adsorption of mercury vapor.

3.2 Influence of NO2 concentration on dynamic  
equilibrium adsorption of mercury vapor on AC and 
AC-Br

 Investigation of NO2 gas influence was carried 
out as the same procedure as for investigation of SO2 
above. But concentration of NO2 gas was changed in  
the range from zero to 100 ppm. The dynamic  
equilibrium adsorption capacity of the materials AC 
and AC-Brafter spiking NO2 gas was measured and 
calculated flows those presented in section 2.2. The 
result is showed in Fig. 5.
 The results in Fig. 5 showed that NO2 presented  
in mercury vapor current had positive effect on adsorption 
of mercury vapor on both AC and AC-Br. In the previous 
studies (Olson et al., 2009),authors showed out that, 
mercury vapor adsorbed onto AC almost was in the 
oxidized forms, Hg(I) or/and Hg(II). Therefore, before 
or during adsorption, mercury vapor was oxidized 
by any oxidation process. In this study, NO2 was an 
oxidant, so NO2 could directly oxidize Hg element or 
support a certain oxidation reaction with elemental 
Hg. Those resulted in forming of activated Hg or/and  
Hg(I), Hg(II)species. These species more easy adsorbed  

The dynamic equilibrium adsorption capacity was determined in the conditions mentioned 
above. At each concentration level of spiked gases, adsorption process was carried out continuously 
and after every 60 min adsorption (equal 30 L gas passed the adsorption column) the fractions were 
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(mg/g)     (1) 
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on non-brominated AC surface in the form of Hg oxides 
or on brominated AC centers through -Br-Hg or -Br-Hg- 
O- or other complex bonds (Granite and Presto, 
2008). The explanation above for increasing of  NO2  
concentration intensified adsorption capacity of  
mercury vapor on  AC and AC-Br is needed somewhere 
more indentified, but it is mostly acceptable.

3.3 Influence of CO2 concentration on dynamic  
equilibrium adsorption of mercury vapor on AC and 
AC-Br

 Investigation of CO2 influence on adsorption  
capacity of mercury vapor onto AC and AC-Br materials 
was carried out under the same experimental conditions 
as those for NO2 or SO2 and concentration of CO2  
increased from zero to 15% (maximum CO2 concentration 
in exhaust gases). The result is present in Fig. 6.

 According to the data presentedin Fig. 6, in the case 
of original AC, when CO2 concentration increased from 
zero to 3%, the adsorption capacity slightly increased 
and then decreased while CO2 concentration increased  
continuously to 15%. For explanation of this phenomenon, 
there is a hypothesis that, in adsorption space, where CO2 
concentration was still small enough, CO2 molecules 
possibly bound with carbon atoms on AC surface, 
especially carbons in the edge of broken carbon net 
or carbenes, and formed stronger oxidative centers. 
These centers enhanced Hg adsorption potential.  
However, in the higher concentration, the dense  
adsorption layer of CO2 on AC surface obstructed 
adsorption of mercury vapor on AC. In the case of  
AC-Br, CO2 had negative influence on adsorption  
capacity in any concentration level. But the decrease 
was not significant; in maximum CO2 concentration 
(15%), the adsorption capacity decreased only about 
14%. The reason could be the obstruction of the dense 
adsorbed CO2 molecules on the surface of the materials.

In the case of AC-Br, the increase of SO2 concentration decreased mercury vapor adsorption 
capacity of the material. Until now, the reason of this phenomenon was not clear yet. It seemed 
reasonable to assume that (1) after bromination, strongest reductive groups in the AC surface were 
oxidized, so it could not reduce SO2 to elemental sulfur and (2) in the space of high concentration of 
SO2 and partly brominatedAC, neutral SO2 molecules could massively adsorbed on the AC surface; 
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The other experimental conditions were kept the same as used for investigation of spiked gases above. 
The influence of water vapor on adsorption capacity is showed in Table 1. 

Table 1. Influence of H2O vapor on adsorption of Hg vapor on AC and AC-Br 

Exp. No H2O vapor concentration (g/m3) qcb (mg/g) 
AC AC-Br 

1 Dried air at 80oC 0.0 8.823 103.792 
2 Saturated in 40oC 59.1 8.202 108.425 
3 Saturated in 60oC 130.5 7.711 112.356 
4 Saturated in 80oC 293.8 7.234 117.482 

According to data in Table 1, there is different effect of water vapor on adsorption of mercury 
vapor on AC and on AC-Br. Increase of water vapor in gas current decreased adsorption capacity of 
AC significantly, but that for AC-Br was slightly increased. Water is easy to adsorb onto AC surface 
and obstructed Hg species contact with adsorption centers on AC surface. But in the case of AC-Br, it 
is possibly that water adsorbed onto the centers containing bromine atoms create favorable conditions 
for Hg react with bromine, therefore adsorption capacity of AC-Br increased. 

3.6. Influence of  mix gases on dynamic equilibrium adsorption of mercury vapor on AC and AC-Br

Mixture of gases used for study experiments in this investigation was present in Table 2. 
Other experimental conditions were kept the same as for investigation of single gas present in section 
2.2.  

Table 2. Composition of gases in gas mixture 

Experiment No NO2 (ppm) SO2 (ppm) HCl (ppm) CO2 (%) 
1 0 0 0 0.32 
2 100 100 5 3.5 
3 200 200 20 8.5 
4 300 300 40 12.0 
5 500 1,000 50 15.0 
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3.6 Influence of mix gases on dynamic equilibrium 
adsorption of mercury vapor on AC and AC-Br

 Mixture of gases used for study experiments in this 
investigation was present in Table 2. Other experimental 
conditions were kept the same as for investigation of 
single gas present in section 2.2.
 The result present in Fig. 8 showed that increase 
of spiked gases concentration from matrix 1 to matrix 
5 decreased adsorption capacity of AC up to 74% but 
that of AC-Br only near 30%. The investigation also 
showed that total effect of gases was not equal simple 
algebraic sum of gases effects. This is more complicated 
due to interactions between gases, mercury vapor and 
functional groups on AC and AC-Br surface. These 
interactions are almost not clear yet and they need to 
be further investigated.

4. Conclusions

 Both AC and AC-Br have possibility to adsorb 
mercury vapor in exhaust gases; therefore the dynamic 
equilibrium adsorption capacity of AC-Br is almost ten 
times higher than that of AC. The influence of main 
components in stack gas (SO2, NO2, CO2, HCl, H2O) and 
mixture of the gases on the adsorption capacity of AC 
and AC-Br was different. Beside different mechanism 
of adsorption of mercury vapor onto AC and AC-Br 
(adsorption onto AC is predominantly physical and 
that on AC-Br is mainly chemical),there are complex 
interaction processes. A part of these interactions and  
processes were explained in this study. The influence of 
gas mixture on adsorption capacity of AC was significant 
(up to 74% decreased) but on AC-Br only about 30% 
in challenging condition. So AC-Br was appreciated 
as an excellent material for stack mercury vapor  
treatment.

Figure 8. Influence of gas mixture on adsorption capacity of AC and AC-Br 

The result present in Fig. 8 showed that increase of spiked gases concentration from matrix 1 
to matrix 5 decreased adsorption capacity of AC up to 74% but that of AC-Br only near 30%. The 
investigation also showed that total effect of gases was not equal simple algebraic sum of gases 
effects. This is more complicated due to interactions between gases, mercury vapor and functional 
groups on AC and AC-Br surface. These interactions are almost not clear yet and they need to be 
further investigated. 

4. Conclusion 

Both AC and AC-Br have possibility to adsorb mercury vapor in exhaust gases; therefore the 
dynamic equilibrium adsorption capacity of AC-Br is almost ten times high than that of AC. The 
influence of main components in stack gas (SO2, NO2, CO2, HCl, H2O) and mixture of the gases on 
the adsorption capacity of AC and AC-Br was different. Beside different mechanism of adsorption of 
mercury vapor onto AC and AC-Br (adsorption onto AC is predominantly physical and that on AC-Br 
is mainly chemical),there are complex interaction processes. A part of these interactions and processes 
were explained in this study. The influence of gas mixture on adsorption capacity of AC was 
significant (up to 74% decreased) but on AC-Br only about 30% in challenging condition. So AC-Br 
was appreciated as an excellent material for stack mercury vapor treatment. 
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