
The Investigation on the Potential of Coconut Shell Powder Composite in Term of  
Carbon Composition, Surface Porosity and Dielectric Properties as a

Microwave Absorbing Material

Yew Been Seoka, Siti Nurbazilaha, Wee Fwen Hoonb, Saiful Bahri Bin Mohameda, 
Ahmad Humaizic, M. Rizon. M. Juharia and W Noor Fatihah W Mohamada

aFaculty of Innovative Design and Technology, Universiti Sultan Zainal Abidin (UniSZA), 
Kampus Gong Badak, 21300 Kuala Terengganu, Terengganu, Malaysia.

bEmbedded Computing Research Cluster, School of Computer and Communication Engineering, 
Universiti Malaysia Perlis (UniMAP), JalanKangar-Alor Star, Taman Pertiwi Indah Seriab, 

01000 Kangar, Perlis, Malaysia.
cSchool of Manufacturing Engineering, Universiti Malaysia Perlis (UniMAP), Kampus Pauh Putra, 

02600 Arau, Perlis, Malaysia.

Abstract

 Agricultural wastes are renewable resources that are potentially useful as microwave absorbing materials. This paper 
presents the investigation on the carbon composition, surface porosity of the raw coconut shell powder particles and the 
dielectric properties of coconut shell powder with epoxy resin matrix composites. From CHNS elemental analysis, it was 
found that the carbon composition of coconut shell powder is 46.700%. Presences of macropores (≈ 2μm) were detected 
in the SEM analysis of the coconut shell powder particles. Measurement on dielectric properties of the coconut shell 
powder composites was performed by using open-ended coaxial probe method over microwave frequency range of 1-8 GHz. 
The overall dielectric constant (εr’) and dielectric loss factor (εr”) of the composite with ratio 50:50 were 3.56 and 0.26, 
ranging from 3.35-3.76 and 0.21-0.30 respectively; whereas for composite ratio 40:60, the overall dielectric constant (εr’) and 
dielectric loss factor (εr”) were 2.97 and 0.21, ranging from 2.74-3.17 and 0.16-0.27 respectively. The electrical conductivity 
calculated based on measured εr” was 0.067 and 0.054 for composite ratio 50:50 and 40:60 respectively. The dielectric 
properties and electrical conductivity of the coconut shell powder composites were influenced by the greater presence of 
high dielectric material (coconut shell powder). This experimental investigation on the potential of the coconut shell powder 
with epoxy resin composites indicates that the ability of the composite to absorb and convert microwave signals is dependent 
on the carbonaceous materials of the composite. This result offers a great opportunity to diversify the use of coconut shell 
powder as microwave absorbing material.
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1. Introduction

 Malaysia is located in a region with fertile 
agricultural land where it produces high productivity 
in agricultural industry. It was estimated that more 
than 2 million tons of agricultural wastes are produced 
annually (Wan et al., 2010; Abdullah et al., 2011; 
Sulaiman et al., 2013). This serves a great opportunity 
for harnessing agricultural waste by-products in an 
eco-friendly and commercially-viable manner. 
Utilization of agricultural wastes helps to minimize 
environmental menace such as emission of methane 
and leachate from rotten waste agricultural biomass 
and open burning that generates carbon dioxide.  
In recent, researchers have focused to identify the  
agriculture wastes as a new microwave absorbing  
material (Nornikman et al., 2010; Abdullah et al., 2012; 

Zahid et al., 2013). The agricultural wastes include rice 
husk wastes, coconut wastes, oil palm wastes, dried  
banana leaves and sugarcane bagasse. The results 
obtained from recent research projects show that the 
agricultural wastes are potentially useful as a microwave 
absorbing material.
 In this paper, we investigate the potential of 
coconut shell powder in terms of carbon composition, 
surface porosity and dielectric properties to be used 
as microwave absorbing material. In section 2, we 
present the materials and methods that were used in 
the experimental investigation. Section 3 presents the 
result and discussion of the experimental determination 
on the carbon composition, SEM analysis of the 
raw coconut shell powder, fabrication and dielectric 
properties measurement of coconut shell powder 
composites. A final conclusion is drawn in Section 4.
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1. Introduction

In India, about 200 tons of mercury and its
compounds are introduced into the environment
annually as effluents from industries (Saffi, 1981).
Mercuric chloride has been used in agriculture as a
fungicide, in medicine as a topical antiseptic and
disinfectant, and in chemistry as an intermediate in
the production of other mercury compounds. The
contamination of aquatic ecosystems by heavy
metals and pesticides has gained increasing attention
in recent decades. Chronic exposure to and
accumulation of these chemicals in aquatic biota
can result in tissue burdens that produce adverse
effects not only in the directly exposed organisms,
but also in human beings.

Fish provides a suitable model for monitoring
aquatic genotoxicity and wastewater quality
because of its ability to metabolize xenobiotics and
accumulated pollutants. A micronucleus assay has
been used successfully in several species (De Flora,
et al., 1993, Al-Sabti and Metcalfe, 1995). The
micronucleus (MN) test has been developed
together with DNA-unwinding assays as
perspective methods for mass monitoring of
clastogenicity and genotoxicity in fish and mussels
(Dailianis et al., 2003).

The MN tests have been successfully used as
a measure of genotoxic stress in fish, under both

laboratory and field conditions. In 2006 Soumendra
et al., made an attempt to detect genetic biomarkers
in two fish species, Labeo bata and Oreochromis
mossambica, by MN and binucleate (BN)
erythrocytes in the gill and kidney erythrocytes
exposed to thermal power plant discharge at
Titagarh Thermal Power Plant, Kolkata, India.

The present study was conducted to determine
the acute genotoxicity of the heavy metal compound
HgCl2 in static systems. Mercuric chloride is toxic,
solvable in water hence it can penetrate the aquatic
animals. Mutagenic studies with native fish species
represent an important effort in determining the
potential effects of toxic agents. This study was
carried out to evaluate the use of the micronucleus
test (MN) for the estimation of aquatic pollution
using marine edible fish under lab conditions.

2. Materials and methods

2.1. Sample Collection

The fish species selected for the present study
was collected from Pudhumadam coast of Gulf of
Mannar, Southeast Coast of India. Therapon
jarbua belongs to the order Perciformes of the
family Theraponidae. The fish species, Therapon
jarbua (6-6.3 cm in length and 4-4.25 g in weight)
was selected for the detection of genotoxic effect

Available online at www.tshe.org/ea/index.html
EnvironmentAsia 9(1) (2016) 9-17

                          DOI 



10

Y. Been Seok et al. / EnvironmentAsia 9(1) (2016) 9-17

2. Materials and Methods

2.1. Important features of microwave absorbing 
material

 Microwave absorption is the irreversible conversion 
of microwave energy into heat energy. Microwave 
absorbers are materials that attenuate the energy in an 
electromagnetic wave and are very useful for suppressing 
electromagnetic interference (EMI) (Tong, 2009). 
It is also used to recreate a free space environment 
by eliminating reflections in an anechoic chamber. 
The microwave absorbers can also be used as radar 
absorbing materials (RAM) in military and stealth 
technology. RAM is used to attenuate return radar 
signal, to disguise structures from radar detection and to 
minimize the levels of electromagnetic energy emitted 
by electric and electronic devices. Most radars used for 
air-traffic control and air-defense systems operate in the 
microwave band (L, S, C, X and Ku bands), whereas 
radars operating in the UHF, L, S and C bands are used 
to monitor the airspace over large distances (Folgueras 
et al., 2014). In the next subsection, we discuss on the 
two important characteristics of a material to be used 
as microwave absorbing material.

2.1.1. The dielectric properties 
 The main characteristic that enables a material 
to absorb microwave energy is based on its dielectric 
properties. The dielectric properties (εr) of materials are 
derived from transmission line theoryand are expressed 
as complex permittivity shown in equation 1 (Datta  
et al., 2005; Saini and Arora, 2012):

 The real part of the permittivity is called the 
dielectric constant (εr’) whereas the imaginary part of 
the permittivity is called the dielectric loss factor (εr”). 
The ability of a material to act as a microwave absorber 
depends on the dielectric constant and dielectric loss 
factor. The dielectric constant defines the ability of 
a material to store the microwave energy while the 
dielectric loss factor defines the ability of a material to 
convert and dissipate the stored microwave energy to 
heat. The dielectric loss factor is always greater than 
zero and is usually much smaller than the dielectric 
constant. In other words, materials that possess higher 
thermal conductivity are preferable as microwave 
absorbing materials as the ability of these materials 
to dissipate heat increase as the thermal conductivity 
increases.

2.1.2. Carbon composition 
 Carbon is the main element to absorb unwanted 
microwave energy (Menéndez et al., 2010; Malek et al., 
2011; Lee et al., 2013; Iqbal et al., 2014). Carbon materials 
are a very good absorbent of microwaves due to its high 
thermal conductivity and it is easily heated by microwave 
energy. The carbon based microwave absorbers absorb 
the microwave energies that propagate through it, covert 
and dissipate those energies as heat. When microwave 
energies propagate through a material, electric field will 
be induced and this electrical energy is transformed 
into thermal energy (Zahid et al., 2013). The electrical 
conductivity (σ) of a dielectric material can be evaluated 
based on the dielectric loss factor (εr”). Refer to equation 
2 and 3 (Micheli et al., 2011).
 The dielectric loss factor is presented as

 Rearrange equation (2)

 Where σ is the electrical conductivity (S/m),εo is the 
free space permittivity (8.854 x 10-12 F/m), f is the 
frequency (Hz), εr” is the dielectric loss factor. 
The dielectric properties can be determined through 
open-ended coaxial probe method by using high 
temperature dielectric probe connected to network 
analyzer with Agilent 85070E measurement software.

2.2. Based material-raw coconut shells

 Commonly available raw coconut shells in 
Gong Badak region, Kuala Terengganu, Malaysia were 
selected as the based material. The raw coconut shells were 
cleaned and well dried before sanded into fine powder 
form based material. Fig. 1 shows the preparation 
of the based material. Fine powder form materials are 
preferred to enhance the surface area of the material.

2.3. Carbon, hydrogen, nitrogen, sulphur (CHNS) 
elemental analysis

 The elemental composition of the raw coconut 
shell powder is determined through elemental (ultimate) 
analysis by using CHNS Elemental Analyzer. The 
elemental analysis determines the elemental composition 
of the coconut shell powder including carbon, hydrogen, 
nitrogen, sulfur. The elemental composition is expressed 
as a percentage of the total mass of the coconut shell 
powder sample. When sum of these compositions is 
subtracted from 100, it gives oxygen composition.
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2.2. Based material-raw coconut shells 
 

Commonly available raw coconut shells in Gong Badak region, Kuala Terengganu, Malaysia 
were selected as the based material. The raw coconut shells were cleaned and well dried before 
sanded into fine powder form based material. Fig. 1 shows the preparation of the based material. Fine 
powder form materials are preferred to enhance the surface area of the material. 
 

 

 
 

 
(a) (b) (c) 

Figure 1. Preparation of the based material (a) Cleaned and well dried coconut shell, (b) Sanding process and  
(c) Coconut shell powder 
 
2.3. Carbon, hydrogen, nitrogen, sulphur (CHNS) elemental analysis 
 

 The elemental composition of the raw coconut shell powder is determined through elemental 
(ultimate) analysis by using CHNS Elemental Analyzer. Theelemental analysis determines the 
elemental composition of the coconut shell powder including carbon, hydrogen, nitrogen, sulfur. The 
elemental compositionis expressed as a percentage of the total mass of the coconut shell powder 
sample. When sum of these compositions is subtracted from 100, it gives oxygen composition. 
 
2.4. Scanning electron microscopy (SEM) analysis  
 
 Samples for the SEM analysis used in this study was prepared by placing the fine coconut 
shell powder on an adhesive tape and mounting the sample on specimen holder with the help of the 
conductive silver adhesive. The specimen surfaces were coated with a thin film of platinum, placed in 
the sample holder and viewed with the Hitachi TM3000Tabletop microscope with an acceleration 
voltage of 15kV. Fig.2 presents the preparations for SEM analysis. 
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Figure 2. (a) Coating of coconut shell powder samplewith platinum (JFC 1600 Auto Fine Coater),   
(b) Placement of the sample on the specimen holder(Hitachi TM3000 Tabletop microscope)
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2.5. Fabrication of coconut shell powder composite

 The fabrication of the planar shape coconut shell 
powder composite can be done based on the steps 
presented in Table 1. The raw coconut shell powder 
is mixed with the binder agent. Epoxy resin is used as 
the binder agent to bind the materials whereas Amine 
hardener agent is used to facilitate the curing process. 
In this work, the ratio of 40:60 and 50:50 of the raw 
coconut shell powder to the binder agent were used. The 
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the behavior of dielectric properties of the coconut shell 
powder composite. The mixture of the coconut shell 
powder and binder agent is then poured into planar 
shape mold and let the mixture cure at room temperature 
for approximately 48 hours. Once the composite is 
completely cured, the measurement of the dielectric 
properties can be performed.

2.6. Dielectric properties measurement using  
open-ended coaxial probe method

 The apparatus used for the dielectric properties 
measurement using open-ended coaxial probe method 
include the Agilent high temperature dielectric probe 
and 85070E measurement software, Agilent E8362B 
PNA series network analyzer and coaxial cables. A 
“three standard” calibration, namely open, short, water 
is performed at the end of the dielectric probe before 
the measurement process. Details on the measurement 
apparatus can be obtained by referring to the Agilent 
technical and application notes. Fig. 3 presents the 
measurement apparatus and setup. In this work, the 
dielectric properties of the fabricated composite were 
measured over the frequency range of 1-8 GHz, which 
represents L, S and C bands.

2.5. Fabrication of coconut shell powder composite 
 

The fabrication of the planar shape coconut shell powder composite can be done based on the 
steps presented in Table 1. The raw coconut shell powder is mixed with the binder agent. Epoxy resin 
is used as the binder agent to bind the materials whereas Amine hardener agent is used to facilitate the 
curing process. In this work, the ratio of 40:60 and 50:50 of the raw coconut shell powder to the 
binder agent were used. The purpose of using two different ratios is to investigate the behavior of 
dielectric properties of the coconut shell powder composite. The mixture of the coconut shell powder 
and binder agent is then poured into planar shape mold and let the mixture cure at room temperature 
for approximately 48 hours. Once the composite is completely cured, the measurement of the 
dielectric properties can be performed.  
 
Table 1. Fabrication of coconut shell powder composite 
 

Step 1: 
Preparation of based material 

Step 2: 
Mixing of based material and  

binder agent 

Step 3: 
Composite curing 

 
The cleaned and dried raw 
coconut shell is sanded into fine 
powder form. 

 
Mixing of coconut shell powder and 
binder agent (Epoxy resin and 
hardener) 
 

 
Composite curing at room 
temperature for approximately 48 
hours 
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Agilent E8362B PNA series network analyzer and coaxial cables. A “three standard” calibration, 
namely open, short, water is performed at the end of the dielectric probe before the measurement 
process.Details on the measurement apparatus can be obtained by referring to the Agilent technical 
and application notes.Fig. 3presents the measurement apparatus and setup. In this work, the dielectric 
properties of the fabricated composite were measured over the frequency range of 1-8 GHz, which 
represents L, S and C bands. 

Measurement is made by simply bring the end of the coaxial probe into the contact with the 
composite surface. The coaxial probe senses the signals that are reflected from the sample and sends 
those signals back to the network analyzer to compute the dielectric properties.It is crucial to ensure 
that the composite surface is as flat as the surface of the coaxial probe in order to minimize the 
fringing effect.Fringing effect is the phenomenon that is caused by the air gap between the coaxial 
probe and the non-uniform composite surfaces. Air gap between the probe and sample can be a 
significant source of error that affects the measurement accuracy. The reflected signals from the 

 Measurement is made by simply bring the end of 
the coaxial probe into the contact with the composite 
surface. The coaxial probe senses the signals that are 
reflected from the sample and sends those signals 
back to the network analyzer to compute the dielectric  
properties. It is crucial to ensure that the composite 
surface is as flat as the surface of the coaxial probe in 
order to minimize the fringing effect. Fringing effect is 
the phenomenon that is caused by the air gap between 
the coaxial probe and the non-uniform composite  
surfaces. Air gap between the probe and sample can be a 
significant source of error that affects the measurement 
accuracy. The reflected signals from the sample,  
particularly small wavelength signals tend to escape 
through the air gaps that are formed from the  
non-uniform composite surfaces.

3. Results and Discussion

 In order to analyze the potential of coconut shell 
powder to be used as microwave absorbing materials, 
the carbon composition and surface porosity of raw 
coconut shell powder were investigated and presented 
in the next subsections.
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powder is potentially useful to be used as microwave 
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  Fig.4 (a) and 4 (b) present the SEM analysis of 
the coconut shell powder with magnification at 2.0kX 
and 5.0kX respectively. Presences of macropores 
(approximately 2μm) were detected in coconut shell  
powder particles. According to IUPAC nomenclature  
(McCusker et al., 2001; Langner et al., 2011), macropores 
are those pores with pore widths greater than 50 nm. 
Materials with minimized pores size are preferable to  
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possess larger surface area. Larger surface area  
enhances the thermal conduction losses during the 
conversion and dissipation of microwave energies to 
heat (Liu et al., 2011; Che et al., 2015).
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3.3. Dielectric properties measurement of coconut  
shell powder composite

 The sample of dielectric properties measurement 
data that is computed by Agilent 85070E measurement 
software is presented in Fig. 5. The measurement data 
is viewed in complex permittivity format (εr’, εr”). 
The dielectric properties of the coconut shell powder 
composite with respect to the ratio are presented 
in Table 3.
 The frequency spectrum of dielectric properties 
over 1-8 GHz is plotted in Fig.6. It can be observed that 
the dielectric constant, εr’ (real part of the permittivity) 
of both composites are greater that of air (ε’air =1.00). 
This indicates that the composites are able to be 
polarized to a greater extent than air. The dielectric 
properties of the composites fluctuate and decrease 
as the frequency increases. These fluctuations were 
due to reflections at the interface of the non-uniform 
nature of the fabricated samples and the coaxial probe 
as frequency increases (Iqbal et al., 2014). 
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(S/m) Ratio of coconut 

shell powder to 
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Dielectric 
constant 
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Dielectric loss 
factor 
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Dielectric 
constant 
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Dielectric loss 
factor 
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50:50 3.35-3.76 0.21-0.30 3.56 0.26 0.067 
 

 
 
 
 

 

Figure 4. (a) SEM image at 2.0 k X magnification, (b) SEM image at 5.0 k X magnification

 The dielectric properties of a material are determined 
by its molecular structure. As the molecular structure 
changes, the dielectric properties changes respectively. 
For composite ratio of 50:50, the overall dielectric 
constant (εr’) and dielectric loss factor (εr”) is 3.56 and 
0.26, ranging from 3.35-3.76 and 0.21-0.30 respectively. 
Whereas for composite ratio of 40:60, the overall 
dielectric constant (εr’) and dielectric loss factor (εr”) 
is 2.97 and 0.21, ranging from 2.74-3.17 and 0.16-0.27 
respectively. The dielectric properties of the coconut 
shell composite with ratio of 50:50 were greater than 
that of ratio 40:60. Composite with higher composition 
of coconut shell powder possess greater dielectric 
properties due to the presence of higher carbonaceous 
(dielectric) material.
 The frequency spectrum of electric conductivity 
over 1-8 GHz is plotted in Fig. 7. It can be observed that 
the electric conductivity of both composites is directly 
proportional to the frequency. The electric conductivity 
for the entire frequency range of composite ratio 50:50 
is greater than that of composite ratio 40:60. Composite 

Composite Range of dielectric properties
over 1-8 GHz

Overall dielectric properties 
over 1-8 GHz

Conductivity
(S/m)Ratio of coconut

shell powder to
binder agent

Dielectric 
constant

(εr’ )

Dielectric loss 
factor
(εr” )

Dielectric 
constant

(εr’ )

Dielectric loss 
factor
(εr” )

40:60 2.74-3.17 0.16-0.27 2.97 0.21 0.054

50:50 3.35-3.76 0.21-0.30 3.56 0.26 0.067

Table 3. The dielectric properties and conductivity of the coconut shell powder composites
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Figure 5. Sample of dielectric properties measurement data (a) Permittivity of air,εair = 1.00, (b) Permittivity of 
CSP composite at frequency 1-8 GHz. 
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Figure 5. Sample of dielectric properties measurement data (a) Permittivity of air,εair = 1.00, (b) Permittivity of 
CSP composite at frequency 1-8 GHz.

ratio 50:50 exhibits greater electric conductivity as the 
presence of carbonaceous materials composition is 
higher. The average electric conductivity over 1-8 GHz 
is 0.054 S/m and 0.067 S/m respectively for composite 
ratio 40:60 and composite ratio 50:50.

4. Conclusions

 This study offers an alternative for microwave 
application seeking for low cost and organic based 
microwave absorber materials. The results of this 
experimental investigation led us to conclude that the 
coconut shell powder composites are potentially useful 

as microwave absorbing materials. Coconut shells 
are carbonaceous materials with 46.700% of carbon 
composition and possess macropores (2μm) particles 
structure. The dielectric properties of the coconut shell 
powder composites are greater than that of air, which 
shows the ability of the composite to be polarized to 
a greater extent of air. It was found that the dielectric 
constant (εr’) and dielectric loss factor (εr”) of the coconut 
shell powder composite with ratio 50:50 was in the 
range of 3.35-3.76 and 0.21-0.30 respectively, with the 
overall value of εr’=3.56 and εr” = 0.26. Whereas for 
composite ratio 40:60, the dielectric constant (εr’) and 
dielectric loss factor (εr”) was in the range of 2.74-3.17 

Figure 6. Dielectric properties of coconut shell powder composites
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and 0.16-0.27 respectively, with the overall value of 
εr’=2.97 and εr”=0.21. Based on the measured εr”, the 
calculated electrical conductivity of the composite ratio 
50:50 and 40:60 was 0.067 S/m and 0.054 S/m 
respectively. Materials with greater dielectric properties 
and conductivity are preferable to absorb and convert 
unwanted microwave signals into heat and this can be 
achieved by enhancing the amount of carbonaceous 
materials in the microwave absorber/composite. 
However, in order to determine the microwave absorption 
ability of the composite, the coconut shell powder 
composite must be further fabricated into specific shape 
and size composite for various microwave absorption 
application.
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