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Abstract

 This paper reports the results of a research project, which attempts to produce a low-cost adsorbent material from 
waste (drinking water sludge). The main objective of this work is to study the characteristics of drinking water sludge for 
its adsorptive properties including morphology, surface area, porosity and chemical composition. The effect of activation 
conditions on H2S gas adsorption efficiency of drinking water sludge was experimented. In this study, raw drinking water 
sludge was divided into 3 groups. In the first group, drinking water sludge was only oven dried at 105°C. For the other 2 
groups, drinking water sludge was soaked in 2.5 M NaOH solution. After soaking, the sludge was divided into 2 groups 
(group 2 and 3). The second group was washed with distilled water until pH 7; while the third group was not. Biogas 
from a swine farm was used with an initial H2S gas concentration in the range of 2,000 - 4,000 ppm. The material analysis 
showed that more surface area and total volume of sludge can be obtained after activated with NaOH. From the adsorption  
experiments, it was found that the highest adsorption capacity (qe) of 87.94 mg H2S/g adsorptive material can be achieved 
by using sludge from the third group. Moreover, by adding of 20 wt% iron filing into sludge of the third group the  
adsorption capacity increased to 105.22 mg H2S/g adsorptive material. Drinking water sludge can be considered as a high 
potential energy saving and low cost adsorbent for removal of H2S.
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1. Introduction

 The use of fossil fuel causes greenhouse gases 
which lead not only to climate change and global 
warming problems; on the other hand it will have some 
negative effects on human health and environment. 
One of sustainable solutions for these problems is 
to use energy sources with less total greenhouse gas  
emission. Biogas is one of this so-called sustainable  
energy, which is produced by anaerobic digestion process 
of easily biodegradable organic wastes, e.g. food waste,  
agricultural waste, manures and night soil (Jam and  
Xiujin, 2009). To improve the potential of biogas  
production, co-digestion of organic wastes could have 
the potential to improve the efficiency of anaerobic 
digestion process (Cheerawit et al., 2012). Khanto and 
Banjerdkij (2016) studied the biogas production from 
anaerobic co-digestion of night soil with food waste. The 
results revealed that up to 56 % methane can be produced  
and up to 97 % COD can be removed. However, 
the major problem of this bioconversion process is 
the production of hydrogen sulfide gas (H2S), which  
varies from 0 - 4,000 ppm (Zicari, 2003). H2S can cause 
health problems from irritation of eyes and airways, 
nausea, vomiting and headache (low concentration < 
75 ppm) to sudden death by apnea within a few minutes

(high concentration > 1,000 ppm) (Deublein and 
Steinhauser, 2008). Furthermore, H2S should be  
removed from biogas prior using in combustion engine 
and burning utilities to avoid engine damage due to 
its corrosiveness (Zicari, 2003). Several techniques 
have been widely used to remove H2S from biogas,  
including chemical absorption, water scrubbing,  
cryogenic, membrane technique, bio-filter and  
adsorption. However, some of these techniques are 
often expensive and produce other pollutants to the  
environment as well. Hence, removal of H2S from 
biogas in several industries and biogas farms has been 
neglected (Pomeroy, 1982; van Lith et al., 1997). For 
these purposes, there are research interests focusing 
on the production of low-cost adsorbents using waste 
materials. Bagreev et al. (2001) studied the efficiency 
of sewage sludge-derived materials for H2S gas  
adsorption process. They found that the presence of 
metal oxides in raw sewage sludge was beneficial to 
the adsorption of H2S gas. Products of the reactions 
can be elemental sulfur, metal sulfides and also  
sulfuric acid. Ros et al. (2006) reported that highly  
porous materials (700 - 1,700 m2/g) can be obtained  
by chemical activation of sludge-based precursors  
with alkaline hydroxides (NaOH and KOH). Ros et al. 
(2007) also reported the experimental results of H2S  
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1. Introduction

In India, about 200 tons of mercury and its
compounds are introduced into the environment
annually as effluents from industries (Saffi, 1981).
Mercuric chloride has been used in agriculture as a
fungicide, in medicine as a topical antiseptic and
disinfectant, and in chemistry as an intermediate in
the production of other mercury compounds. The
contamination of aquatic ecosystems by heavy
metals and pesticides has gained increasing attention
in recent decades. Chronic exposure to and
accumulation of these chemicals in aquatic biota
can result in tissue burdens that produce adverse
effects not only in the directly exposed organisms,
but also in human beings.

Fish provides a suitable model for monitoring
aquatic genotoxicity and wastewater quality
because of its ability to metabolize xenobiotics and
accumulated pollutants. A micronucleus assay has
been used successfully in several species (De Flora,
et al., 1993, Al-Sabti and Metcalfe, 1995). The
micronucleus (MN) test has been developed
together with DNA-unwinding assays as
perspective methods for mass monitoring of
clastogenicity and genotoxicity in fish and mussels
(Dailianis et al., 2003).

The MN tests have been successfully used as
a measure of genotoxic stress in fish, under both

laboratory and field conditions. In 2006 Soumendra
et al., made an attempt to detect genetic biomarkers
in two fish species, Labeo bata and Oreochromis
mossambica, by MN and binucleate (BN)
erythrocytes in the gill and kidney erythrocytes
exposed to thermal power plant discharge at
Titagarh Thermal Power Plant, Kolkata, India.

The present study was conducted to determine
the acute genotoxicity of the heavy metal compound
HgCl2 in static systems. Mercuric chloride is toxic,
solvable in water hence it can penetrate the aquatic
animals. Mutagenic studies with native fish species
represent an important effort in determining the
potential effects of toxic agents. This study was
carried out to evaluate the use of the micronucleus
test (MN) for the estimation of aquatic pollution
using marine edible fish under lab conditions.

2. Materials and methods

2.1. Sample Collection

The fish species selected for the present study
was collected from Pudhumadam coast of Gulf of
Mannar, Southeast Coast of India. Therapon
jarbua belongs to the order Perciformes of the
family Theraponidae. The fish species, Therapon
jarbua (6-6.3 cm in length and 4-4.25 g in weight)
was selected for the detection of genotoxic effect

Available online at www.tshe.org/ea/index.html
EnvironmentAsia 10(1) (2017) 73-80

                      DOI 



74

S. Polruang et al. / EnvironmentAsia 10(1) (2017) 73-80

gas removal efficiency with sludge-based materials.  
The results showed that highly porous materials, a high 
metallic content and a basic pH of the adsorbents were 
required to achieve good adsorptive performance. In 
their study, the maximum loading (x/m) of 456 mg 
H2S / g adsorbent can be achieved. Moreover, titration 
showed that most of H2S was removed in the form 
of elemental sulfur, especially by using sewage- 
sludge-derived material activated with NaOH.  
Manajit (2008) found that in continuous experiments 
of 13 days lateritic soils blended with 20 wt% iron  
filings can remove 100% H2S (50 ppm inlet H2S  
concentration with the maximum loading of 7.34 mg 
H2S / g adsorbent). Furthermore, other alternative  
materials, e.g. soils and clay were also studied for 
their gas adsorption properties. It was found that 
alkaline activation also enhanced CO2 removal  
efficiency with soils and clay (Aylmore, 1974; Jonge and  
Mittelmeijer-Hazeleger, 1996; Pires and Pinto, 2010).  
It was also found that chemical composition of drinking 
water sludge and clay were quite similar and can be 
classified as natural inorganic adsorbents (Suriyachart 
et al., 2004). However, studies of drinking water sludge 
for gas adsorption have been rarely investigated. 
 The main objective of this work is to study the 
removal efficiency of H2S from biogas by using  
drinking water sludge. The characteristics of drinking 
water sludge were investigated for its adsorptive 
properties including morphology, surface area,  
porosity and chemical composition. The adsorption 
efficiency of raw and chemical activated (with NaOH) 
drinking water sludge was experimented. Moreover, 
the addition of iron filing, which can be considered as 
a waste product from metal finishing industries, into 
the selected adsorptive material was also experimented.

2. Materials and Methods

2.1 Preparation of materials

 Drinking water sludge used in this study was  
collected from Banglen Water Treatment Plant in  
Nakhonpathom, Thailand. It was stored in a dark  
plastic bag at 4°C and oven dried at 105°C for 24 
hr. For all adsorption experiments, adsorbents with 
the same particle size in the range of 2.36-3.35 mm.  
(sieve number #6 and #8) were used. Dried drinking 
water sludge was divided into 2 groups. The first  
group of drinking water sludge was only grounded  
and sieved. This sludge will be referred to as “S”.
 For the second group of drinking water sludge, 
activation by NaOH was carried out following the 
impregnation method, as described elsewhere (Ros  
et al., 2006). One half of this sludge (activated with 
NaOH) was washed with distilled water until the pH of 

the washing water was 7 and oven dried at 105°C for 24 
hours. It was then grounded and sieved. This drinking 
water sludge was named as “SAW”.
 For the other half of sludge activated with NaOH, 
after impregnation, the samples were filtered and  
oven dried at 105°C for 24 hours. It was then grounded 
and sieved to obtain the same particle size as the others. 
This drinking water sludge was named as “SANW”.
 To study H2S removal efficiency of drinking 
water sludge combined with iron filing, 20 wt% of 
iron filing was then added to the material that has the  
highest removal efficiency and the highest adsorption 
capacity, i.e. chosen from S, SAW and SANW (Manajit, 
2008).
 Iron filing was collected from a metal finishing 
industry in Samutsongkram, Thailand. The adsorptive 
material was named as “* + 20% Fe”.

2.2 Characterization of drinking water sludge

 The surface area and porosity of raw and  
chemical activated (with NaOH) drinking water  
sludge were carried out using Brunauer Emmett  
Teller (BET) analyzer. The BET was carried out by 
nitrogen adsorption-desorption method using nitrogen 
temperature (77 K) with an autosorb BET apparatus 
(Micrometrics ASAP 2020). The analysis procedure 
was automated and operated with static volumetric 
techniques. The samples were first degassed at 473 K 
for 2 hours before each measurement was recorded.  
The elemental and morphological analysis was carried 
out using a combination of Scanning Electron  
Microscopy (SEM) with Energy Dispersive X-ray 
Spectroscopy (EDX) (Model FEI Quanta 450).

2.3 Experimental setup

 For each experiment, 10 g adsorbent was randomly 
packed in an adsorption column made from PVC  
plastic with an interior diameter of 2.5 cm and a total 
bed length of 20 cm. The dimension of the adsorption 
column is shown in Fig. 1.
 The adsorption experiments were carried out at 
a biogas farm in Lopburi, Thailand and real biogas 
was used for all experiments. Biogas flow rate into 
the adsorption column was between 520 - 580 ml/min, 
while H2S concentration at the inlet was in the range 
of 2,000-4,000 ppm. Each continuous experiment was 
carried out for 8 hours and the throughput volume was 
between 250,000 - 260,000 ml. Biogas samples were 
collected from 2 gas sampling points at the gas inlet 
and gas outlet, see Fig. 1. Gas samples were analyzed 
using gas chromatograph SHIMADZU GC6890. All 
measurements were repeated 3 times. Removal  
efficiency was calculated using equation (1):
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         (1)

 Where, ci and co are the inlet and outlet H2S  
concentration (ppm), respectively.
 The adsorption capacity can be defined as the 
amount of H2S adsorbed by the adsorptive materials 
(qe) and was calculated using equation (2):

         (2)

 Where, V is the throughput volume of biogas, m is 
the mass of adsorptive material used and ci and co are 
the inlet and outlet H2S concentrations, respectively.

3. Results and Discussion

3.1 Characterization of drinking water sludge

 Surface area and pore size of adsorbents are among 
important parameters that describe the quality of  
adsorbents as they affect directly their analysed  
retention abilities. Table 1 shows some physical  
properties of raw and chemical activated (with NaOH) 
drinking water sludge. It can be seen that more surface 
area and total volume can be obtained by activation  
with NaOH. Similar results were also reported by Ros 
et al. (2006).

 Fig. 2 shows the adsorption isotherm of both raw 
and chemical activated (with NaOH) drinking water 
sludge prepared for this study. The results indicated 
that both are the isotherm of Type III, which explains 
the formation of multilayers and the adsorption is not 
limited even at high relative pressure ratio (P/Po).
 The elemental analysis and morphological  
structures of raw drinking water sludge obtained are 
illustrated in Fig. 3. Raw drinking water sludge  
comprised about 55 wt% of O, 27 wt% of Si, 10 
wt% of Al, 4 wt% of Fe and about 4 wt% of other  
metals. This was comparable with the analysis data of  
drinking water sludge from the other three drinking 
water treatment plants in Bangkok (Suriyachart et al., 
2004).
 Scanning electron microscope (SEM) morphology 
of sludge S, SAW and SANW with magnification of 
(a) 30, (b) 1,000 and (c) 5,000 are shown in Fig. 4 in 
order to compare surface and pores of each adsorptive 
material before the experiments.
 As can be clearly seen from Fig. 4, by the  
magnification of 30 the surface of S and SAW/SANW 
are quite different. The surface of S is relatively 
smooth, while those of SAW and SANW are quite 
rough. This could be due to the reaction with NaOH. 
For higher magnifications, the difference between their  
morphological structures cannot be easily seen.  
Nonetheless, more small pores can be seen for SANW 
with magnifications of 1,000 and 5,000, compared  
with the other two.
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3.2 Adsorption experiments
 
 The removal efficiency (%) and the amount of  
H2S adsorbed by the adsorptive material (qe) were 
used to investigate the performance of the adsorptive  
materials. Fig. 5 shows the removal efficiency of S, 
SAW, SANW, and SANW+20%Fe. The throughput 
volume of each experiment ranged between ca.  
250,000 - 260,000 ml. The initial concentration of  
H2S varied between 2,000 - 4,000 ppm.
 The maximum removal efficiency obtained from 
S, SAW and SANW were 86.58, 98.17 and 99.99 %, 
respectively. Furthermore, it can be seen in Fig. 5 that 
the removal efficiency of SANW was above 99 % for 
almost the whole experiment time, whereas at the end of 
the experiment (throughput volume of  biogas above ca. 
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226,000 ml or ca. 7 hours throughput time) the removal 
efficiency dropped to 90.8%. The experiments also 
showed that by using SANW the outlet concentration 
of H2S was lower than 1 ppm for throughput volume 
up to ca. 226,000 ml (ca. 7 hours throughput time). For
higher throughput volumes from ca. 226,000 to 258,000 
ml, the outlet concentration increased from 4.8 to 255 
ppm. Biogas with H2S concentration lower than 100 
ppm can be used for internal combustion engines, 
while for upgraded natural gas the H2S concentration 
must be lower than 4 ppm (Zicari, 2003). The results of  
adsorption capacity (qe) from the beginning to the end 
of the experiments showed that SANW also had the 
highest qe value of 87.94 mg H2S/g adsorptive material
compared with SAW (81.38 mg H2S/g adsorptive  
material) and S (72.64 mg H2S/g adsorptive material).
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efficiency of S, SAW, SANW, and SANW+20%Fe. The throughput volume of each experiment 
ranged between ca. 250,000 - 260,000 ml. The initial concentration of H2S varied between 2,000 - 
4,000 ppm. 

Figure 5. Removal efficiency of S, SAW, SANW, and SANW+20%Fe

 The maximum removal efficiency obtained from S, SAW and SANW were 86.58, 98.17 and 
99.99 %, respectively. Furthermore, it can be seen in Fig. 5 that the removal efficiency of SANW was 
above 99 % for almost the whole experiment time, whereas at the end of the experiment (throughput 
volume of biogas above ca. 226,000 ml or ca. 8 hours. throughput time) the removal efficiency 
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was lower than 1 ppm for throughput volume up to ca. 226,000 ml (ca. 7 hours throughput time). For 
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combustion engines, while for upgraded natural gas the H2S concentration must be lower than 4 ppm 
(Zicari, 2003). The results of adsorption capacity (qe) from the beginning to the end of the 
experiments showed that SANW also had the highest qe value of 87.94 mg H2S/g adsorptive material 
compared with SAW (81.38 mg H2S/g adsorptive material) and S (72.64 mg H2S/g adsorptive 
material).  
 The reason for high adsorption capacity of SANW was the remaining of strong base, i.e. 
NaOH, in the material, which can react with H2S and immobilize it. H2S adsorbed on the surface of 
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are as followed (Chiang et al., 2000): 

 H2S + NaOH   HSNa + H2O     (3) 
and 
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Fig. 6 shows the elemental analysis of S, SAW and SANW after the adsorption process. 
About 1-2 wt% of sulfer was found in every used sludge samples (no sulfur was found in unused raw 
sludge). Conformed to the highest qe value of SANW there was also the highest amount of sulfur 
(2.02 wt%) found in used SANW, compared with those in S (1.16 wt%) and SAW (1.54 wt%). 

For SANW, drinking water sludge acted more as a passive support for NaOH rather than 
actively participating in the H2S removal. This is in a similar manner to activated carbon impregnated 
with alkaline. The alkaline addition has a catalytic effect by oxidizing sulfide ions to elemental sulfur 
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 The reason for high adsorption capacity of SANW 
was the remaining of strong base, i.e. NaOH, in the 
material, which can react with H2S and immobilize it. 
H2S adsorbed on the surface of the alkaline adsorptive 
material and generated two products and a water film. 
The chemical reactions are as followed (Chiang et al., 
2000):
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 Fig. 6 shows the elemental analysis of S, SAW and 
SANW after the adsorption process. About 1-2 wt% 
of sulfer was found in every used sludge samples (no 
sulfur was found in unused raw sludge). Conformed 
to the highest qe value of SANW there was also the  
highest amount of sulfur (2.02 wt%) found in used 
SANW, compared with those in S (1.16 wt%) and SAW 
(1.54 wt%).
 For SANW, drinking water sludge acted more 
as a passive support for NaOH rather than actively  
participating in the H2S removal. This is in a similar 
manner to activated carbon impregnated with  

alkaline. The alkaline addition has a catalytic effect by  
oxidizing sulfide ions to elemental sulfur until there is no  
alkaline left to react (Siefers, 2010). The typical  
adsorption capacity for alkaline impregnated activated 
carbon compared with unimpregnated one were 150 
and 20 mg H2S/ g of activated carbon, respectively 
(Abatzoglou and Boivin, 2008). For this reason, SANW 
was used for the next following study.
 Iron filing was then added into SANW by the 
amount of 20 wt%. Same as previous experiments, 
the total amount of the adsorptive materials was 10 g. 
The result showed the removal efficiency of SANW + 
20 wt% iron filing (named as SANW+20% Fe in  
Fig. 5) was above 99 % for throughput volume up to ca. 
170,000 ml. For throughput volume from ca. 200,000 to 
265,000 ml, the removal efficiency dropped from 97.8 
to 90.7 %, respectively, see Fig. 5. By considering the
adsorption capacity (qe) from the beginning to the end 
of the experiment, SANW+20% Fe had the highest qe 
of 105.22 mg H2S/g adsorptive material. In this case, 
SANW was, as previously described, used as a passive 
support for NaOH and iron filing reacted with H2S  
according to the following reaction (Ryckebosch  
et al., 2011):
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impregnated activated carbon compared with unimpregnated one were 150 and 20 mg H2S/ g of 
activated carbon, respectively (Abatzoglou and Boivin, 2008). For this reason, SANW was used for 
the next following study. 

Figure 6. The spectrum EDX analysis of S, SAW and SANW after adsorption process 
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highest qe of 105.22 mg H2S/g adsorptive material. In this case, SANW was, as previously described, 
used as a passive support for NaOH and iron filing reacted with H2S according to the following 
reaction (Ryckebosch et al., 2011): 

 Fe2O3 + 3H2S  Fe2S3 + 3H2O     (5) 
Whereas Fe2S3 can react to (Sharma, 1991) 

 Fe2S3  2FeS + S      (6) 
 Moreover, it should be noticed that iron and other metals that were present in drinking water 
sludge itself can also react with H2S (Ting et al., 2008). 
  

MOx(s) + xH2S ↔ MSx(s) + xH2O (g)    (7) 
 Where, M represents metals, and thus MOx refers to metal oxides in drinking water sludge. 

Table 2 shows the adsorption capacity (qe), comparison with previous studies on different 
materials used by other researchers. The direct comparison with activated carbon and sewage sludge 
impregnated with NaOH is difficult. However, it must be pinpointed that the activation methods used 
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metals that were present in drinking water sludge itself 
can also react with H2S (Ting et al., 2008).
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 Where, M represents metals, and thus MOx refers 
to metal oxides in drinking water sludge.

 Table 2 shows the adsorption capacity (qe),  
comparison with previous studies on different  
materials used by other researchers. The direct  
comparison with activated carbon and sewage sludge
impregnated with NaOH is difficult. However, it must 
be pinpointed that the activation methods used in this 
study were simple and the temperature used in the 
material preparation process was quite low (105°C) 
compared with those of activated carbon (730°C,  
Lillo-Ródenas et al., 2001) and sewage sludge (700°C, 
Ros et al., 2007). Therefore, drinking water sludge  
activated with NaOH with addition of iron filing can be 
considered as a high potential energy saving and low 
cost adsorbent for removal of H2S.

4. Conclusion

 The H2S-adsorption capacity, and thus H2S removal 
efficiency of drinking water sludge were affected by 
both chemical treatment and the addition of iron filing. 
Drinking water sludge itself had a low surface area of 
70.8 m2/g. Furthermore, it also contained about 4 wt% 
iron and traces of other metals, which can react with 
H2S. After chemical treatment with NaOH, the total 
surface area of drinking water sludge was increased to 
90.51 m2/g. The experimental results showed that the 
remaining NaOH in the adsorptive materials improved 
the adsorption capacity qe of the adsorbents. In this  
case drinking water sludge will act as a support  
material for NaOH. The chemical reactions between 
H2S and NaOH were described in equations (3) and 
(4). By adding iron filing, the adsorption capacity, qe, 
was the highest (105.22 mg H2S/g adsorbent). Iron  
filing also contributed to the adsorption of H2S as shown 
in equation (5). To regenerate or reuse drinking water 
sludge and iron filing, using air flow or oxidation with 
oxygen are interested for further study, due to following  
reaction:

          (8)

 Though, compared with commercial adsorptive 
materials, the adsorption capacity, qe, of drinking water 
sludge with addition of iron filing was moderate, but 
it can be considered as a high potential energy saving 
and low cost adsorbent for removal of H2S.
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in this study were simple and the temperature used in the material preparation process was quite low 
(105°C) compared with those of activated carbon (730°C, Lillo-Ródenas et al., 2001) and sewage 
sludge (700°C, Ros et al., 2007). Therefore, drinking water sludge activated with NaOH with addition 
of iron filing can be considered as a high potential energy saving and low cost adsorbent for removal 
of H2S. 

Table 2. Adsorption capacity (qe) of some alternative adsorptive materials 

Adsorptive material 
Adsorption capacity 

Reference 
qe (mg H2S/g adsorbent) 

Activated carbon mixed with NaOH 300 - 330 Lillo-Ródenas et al., 2001 
Lateritic soils 14.4 Manajit, 2008 
Redmud 21 Sahu et al., 2011 
S 72.64 this study 
SAW 81.38 this study 
SANW 87.93 this study 
SANW+20% Fe 105.22 this study 
Sewage sludge impregnated with FeCl3 104.5 Bagreev et al.,2001 
Sewage sludge impregnated with NaOH  456 Ros et al., 2007 

4. Conclusion 

 The H2S-adsorption capacity, and thus H2S removal efficiency of drinking water sludge were 
affected by both chemical treatment and the addition of iron filing. Drinking water sludge itself had a 
low surface area of 70.8 m2/g. Furthermore, it also contained about 4 wt% iron and traces of other 
metals, which can react with H2S. After chemical treatment with NaOH, the total surface area of 
drinking water sludge was increased to 90.51 m2/g. The experimental results showed that the 
remaining NaOH in the adsorptive materials improved the adsorption capacity qe of the adsorbents. In 
this case drinking water sludge will act as a support material for NaOH. The chemical reactions 
between H2S and NaOH were described in equations (3) and (4). By adding iron filing, the adsorption 
capacity, qe, was the highest (105.22 mg H2S/g adsorbent). Iron filing also contributed to the 
adsorption of H2S as shown in equation (5). To regenerate or reuse drinking water sludge and iron 
filing, using air flow or oxidation with oxygen are interested for further study, due to following 
reaction: 

 Fe2S3 + O2  2Fe2O3 + 3S2     (8) 
 Though, compared with commercial adsorptive materials, the adsorption capacity, qe, of 
drinking water sludge with addition of iron filing was moderate, but it can be considered as a high 
potential energy saving and low cost adsorbent for removal of H2S.  
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