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Abstract

 Polluted ponds and lakes close to agricultural activities become the exposure route of manganese (Mn) and cadmium 
(Cd) to aquatic plants in near vicinity. Therefore, a study of the uptake, bioaccumulation, and translocation of Mn and Cd 
by the water spinach (Ipomoea aquatica) is presented in this paper. Different concentrations of Mn and Cd were added to 
the hydroponic nutrient solution that was used to grow the plants for the heavy metal uptake experiment under greenhouse 
conditions. The plant samples exposed to heavy metals were collected to determine the metal concentrations using atomic 
absorption spectroscopy (AAS) and the metal concentrations were found for Mn was between 1.589 to 9.696 μg/g and Cd 
from 5.309 to 10.947 μg/g. The correlation and regression results showed that the water-to-shoot bioaccumulation factor 
(BAF) decreased for Mn, while root-to-shoot translocation factor (TF) values increased in the order Cd > Mn to the increasing 
levels of metals in the water. Furthermore, it was revealed from the two-way analysis of variance (ANOVA) that the  
different metal types influenced the BAF and TF values at different metal concentration treatments.
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1. Introduction

 Heavy metal contamination in surface water is a 
common phenomenon nowadays due to the increasing 
pollution sources caused by human activities (Nasir  
et al., 2012). Ponds and lakes are surface waters which 
are near stagnant and slow-moving when compared to 
rivers. The metals ending up in the ponds and lakes are 
dependent on the activities that are being carried out at 
the nearby areas. Khairiah et al. (2009) and Bolan et al. 
(2013) have reported that the pesticide and chemical 
fertilizer used in agricultural activities contribute huge
amounts of Mn and Cd into the natural environment. 
These heavy metals leach out from the soil into 
the ponds and lakes and literally elevate the metal  
concentrations (Rӧmkens et al., 2002; Bonten et al., 
2008). The metals are then taken up by aquatic plants 
in the polluted ponds and lakes.
 Some aquatic plants are found to have the tendency 
to uptake heavy metals from surface waters, for example 
water mint (Mentha aquatica) (Zurayk et al., 2002), 
water plantain (Alisma plantago aquatica) (Fritioff and 
Greger, 2003), hornwort (Ceratophyllum demersum) 
(Keskinkan et al., 2004), parrot feather (Myriophylhum 
aquaticum) (Kamal et al., 2004), and duckweed  
(Landoltia punctata) (Miranda et al., 2014).

 Water spinach (WS) or Kangkong as called by 
the locals, is one of the popular consumed vegetables 
in Malaysia. Wild water spinach (WWS) can be found 
along the edges of ponds and lakes. It is a type of 
fast-growing aquatic plant due to its ability to reproduce
vegetatively and by seeds. Nutrients including  
microelements are acquired from the water source and 
they are transferred from the root to the shoot (stems 
and leaves) for plant growth (Dhir, 2013). However, 
only little research has been done for WWS compared 
to duckweeds (Lemna gibba and Lemna minor)  
(Chaudhary and Sharma, 2014) and water hyacinth 
(Eichhornia crassipes) (Kabeer et al., 2014) which are 
widely studied for their heavy metals uptake.
 To extract the metal from the plant samples, acids 
are commonly utilized to digest them. The digestion 
is usually started at a low temperature and then  
increased to a higher temperature. The process may 
take a couple of hours for the samples to be fully  
digested. A selection of acids had been experimented 
on by previous studies, for example combinations of 
nitric acid (HNO3) with perchloric acid (HClO4) (Yap 
et al., 2009), HNO3-hydrofluoric acid (HF) (Khillare 
et al., 2012), HNO3-HClO4-sulfuric acid (H2SO4) 
(Opaluwa et al., 2012), HNO3-H2O2-hydrochloric acid 
(HCl) (Sapci and Ustun, 2012), HNO3-HClO4-hydrogen  
peroxide (H2O2) (Miranda et al., 2014), and HNO3 
(Nazir et al., 2015).
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1. Introduction

In India, about 200 tons of mercury and its
compounds are introduced into the environment
annually as effluents from industries (Saffi, 1981).
Mercuric chloride has been used in agriculture as a
fungicide, in medicine as a topical antiseptic and
disinfectant, and in chemistry as an intermediate in
the production of other mercury compounds. The
contamination of aquatic ecosystems by heavy
metals and pesticides has gained increasing attention
in recent decades. Chronic exposure to and
accumulation of these chemicals in aquatic biota
can result in tissue burdens that produce adverse
effects not only in the directly exposed organisms,
but also in human beings.

Fish provides a suitable model for monitoring
aquatic genotoxicity and wastewater quality
because of its ability to metabolize xenobiotics and
accumulated pollutants. A micronucleus assay has
been used successfully in several species (De Flora,
et al., 1993, Al-Sabti and Metcalfe, 1995). The
micronucleus (MN) test has been developed
together with DNA-unwinding assays as
perspective methods for mass monitoring of
clastogenicity and genotoxicity in fish and mussels
(Dailianis et al., 2003).

The MN tests have been successfully used as
a measure of genotoxic stress in fish, under both

laboratory and field conditions. In 2006 Soumendra
et al., made an attempt to detect genetic biomarkers
in two fish species, Labeo bata and Oreochromis
mossambica, by MN and binucleate (BN)
erythrocytes in the gill and kidney erythrocytes
exposed to thermal power plant discharge at
Titagarh Thermal Power Plant, Kolkata, India.

The present study was conducted to determine
the acute genotoxicity of the heavy metal compound
HgCl2 in static systems. Mercuric chloride is toxic,
solvable in water hence it can penetrate the aquatic
animals. Mutagenic studies with native fish species
represent an important effort in determining the
potential effects of toxic agents. This study was
carried out to evaluate the use of the micronucleus
test (MN) for the estimation of aquatic pollution
using marine edible fish under lab conditions.

2. Materials and methods

2.1. Sample Collection

The fish species selected for the present study
was collected from Pudhumadam coast of Gulf of
Mannar, Southeast Coast of India. Therapon
jarbua belongs to the order Perciformes of the
family Theraponidae. The fish species, Therapon
jarbua (6-6.3 cm in length and 4-4.25 g in weight)
was selected for the detection of genotoxic effect
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 The lack of information regarding the ability of 
WWS to uptake Mn and Cd from the water prompted 
the present study to grow WWS using the hydroponic 
method to mimic the standing water in a pond. The 
hydroponic method was used because of the simplicity 
of the process, space-saving, and the ability to produce 
crops in a short amount of time in a controlled  
environment. The water-to-shoot bioaccumulation 
(BAF) and the root-to-shoot translocation factors (TF) 
were determined to assess the mobilities of Mn and Cd 
from the water to the plant.

2. Materials and Methods

2.1 Apparatus and reagents

 Atomic absorption spectroscopy (AAS Model  
AA-6800 Shimadzu) (Shimadzu Corp., Kyoto, Japan) 
was employed to analyze the water and plant samples. 
For the preparation of hydroponic solutions, distilled 
water was obtained from the laboratory, the LushGro 
Hydro concentrated nutrient solutions A and B that 
consisted of nitrogen (N) 250 mg/L, nitrate (N-NO) 
225 mg/L, ammonium (N-NH) 25 mg/L, phosphorus 
(P) 62.5 mg/L, potassium (K) 325 mg/L, calcium (Ca) 
200 mg/L, magnesium (Mg) 62.5 mg/L, sulfur (S) 110 
mg/L, iron (Fe) 3 mg/L, manganese (Mn) 2 mg/L,  
copper (Cu) 0.1 mg/L, zinc (Zn) 0.3 mg/L, boron (B) 0.7
mg/L, and molybdenum (Mo) 0.05 mg/L was purchased 
from Malaysia Hydroponics (Selangor, Malaysia). Stan-
dard Mn and Cd solutions (1000 mg/L) were obtained 
from Nacalai Tesque Inc. (Kyoto, Japan).
 For the preservation and acid digestion of the water 
and plant samples, 65% concentrated nitric acid (HNO3) 
(Bendosen Laboratory Chemicals, Bendosen, Norway) 
was used. Peach leaves, SRM 1547 were used as the 
standard reference material in the plant analysis and it 
was purchased from the National Institute of Standards 
& Technology (Maryland, USA).

2.2 Preparation of metal-contaminated water

 Metal-contaminated waters which were called as 
treatment 1 (T1) and treatment 2 (T2) and control water 
(C) were used. C was water without metal treatment. 
Before being treated, hydroponic nutrient solutions were 
prepared by mixing distilled water and concentrated 
nutrient solutions A and B. For Mn, T1 and T2 had 
10 and 50 times of the concentration found in C. Mn  
solutions were added into the nutrient solutions to 
adjust the concentrations to approximately 0.3 and 
1.5 mg/L for T1 and T2, respectively. As for Cd, T1 
and T2 had 100 and 500 times of the concentration 
found in C. Cd solutions were added to adjust the  

concentrations to approximately 0.1 and 0.5 mg/L 
for T1 and T2, respectively. To ensure the homogeneity 
of the nutrient and metal solutions, they were 
thoroughly mixed. The treatment concentrations 
were used because the work focuses on the uptake 
ability by WWS in extreme heavy metal polluted 
conditions that happened in Carrot River, Canada 
(Health Canada, 1979) and LongJiang River, China 
(Li, 2012) for Mn (1.7 mg/L) and Cd (0.4 mg/L)  
respectively. Besides that, water spinach has proven 
in the past to be able to accumulate high Mn which 
were 57.3 mg/kg (fresh weight) and 251.7 mg/kg 
(dry weight) as reported by Marcussen et al. (2008) 
and Kanakaraju et al. (2016), respectively; Göthberg  
et al. (2002)  reported the  dry  weight  of  Cd  accumulation 
was 123 μg/kg and Wang et al. (2008) found the  
bioconcentration factors of Cd were high in water 
spinach with results of 2227 and 144 l/kg for the roots 
and shoots, respectively.

2.3 Plant growth and heavy metal uptake experiment

 Three greenhouses neighboring with each other 
were constructed with respective numbers greenhouse 1 
(G2), greenhouse (G2), and greenhouse (G3) to grow the 
WWS. Each greenhouse had three compartments and 
was equipped with lighting system with time intervals 
of 12 h daylight and 12 h darkness. The temperature 
and humidity were within the range of 30.08 - 31.52°C 
and 53 - 56%. G2 and G3 served as the replicates for 
the experiment that was carried out in G1. Matured 
stems of the WWS were collected from the natural 
ponds (3°00’ 23.34”N, 101°42’ 34.97”E; 2°59’ 1.94”N, 
101°42’ 41.57”E). The stems were segmented and  
immersed into hydroponic containers containing  
nutrient solutions under greenhouse conditions. The  
initial weights of the 3 weeks-old WWS of each  
individual treatment in this experiment are recorded 
in Table 1. The plants were transplanted and grown in 
C, T1, and T2 treatments for each metal with 8 plants 
per container. All treated plants were harvested after 7 
days of metal exposures.

Table 1. Initial weights of  3-weeks old plants used (mean ±  
SD, n = 3)
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that was carried out in G1. Matured stems of the WWS were collected from the natural ponds 
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segmented and immersed into hydroponic containers containing nutrient solutions under 
greenhouse conditions. The initial weights of the 3 weeks-old WWS of each individual 
treatment in this experiment are recorded in Table 1. The plants were transplanted and grown 
in C, T1, and T2 treatments for each metal with 8 plants per container. All treated plants were 
harvested after 7 days of metal exposures. 

Table 1. Initial weights of 3-weeks old plants used (mean ± SD, n = 3) 

Treatment Fresh weight (g) 
Mn 

C 11.428 ± 0.191 
T1 11.549 ± 0.222 
T2 11.250 ± 0.183 

Cd 
C 11.859 ± 0.153 
T1 11.774 ± 0.180 
T2 11.824 ± 0.173 

2.4 Acid digestion 

The roots and shoots were separated and then they were washed and rinsed using 
distilled water. They were dried at 70°C for 48 h in an oven until a constant weight was 
achieved. The oven-dried roots and shoots were ground using a mortar and pestle into powder. 
The acid digestion was conducted by following the procedures used by Yap et al. (2003) with 
slight modifications. About 1 g of the powdered plant sample was used. HNO₃ was added and 
the sample was predigested for 24 h. The predigested sample was heated to 40˚C and then 
140˚C on the heating block for approximately 1 h and 3 h, respectively. The clear digest was 
cooled, filtered, and diluted. 

2.5 Metal analysis 

Water samples (before and after treatments) were taken from C, T1, and T2 and 
preserved with HNO₃ to pH < 2 and stored at 4˚C. The water samples and the plant extracts 
were analyzed by using AAS. 

2.6 Statistical analysis 

Analysis of variance (ANOVA) and regression found in the Microsoft Office Excel 
2007 software were used. Moreover, correlation matrix found in StatPlus (Excel add-in) was 
also used. 
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2.4 Acid digestion

 The roots and shoots were separated and then 
they were washed and rinsed using distilled water. 
They were dried at 70°C for 48 h in an oven until a 
constant weight was achieved. The oven-dried roots 
and shoots were ground using a mortar and pestle into 
powder. The acid digestion was conducted by following 
the procedures used by Yap et al. (2003) with slight  
modifications. About 1 g of the powdered plant sample 
was used. HNO3 was added and the sample was  
predigested for 24 h. The predigested sample was 
heated to 40°C and then 140°C on the heating block for  
approximately 1 h and 3 h, respectively. The clear digest 
was cooled, filtered, and diluted.

2.5 Metal analysis

 Water samples (before and after treatments) were 
taken from C, T1, and T2 and preserved with HNO3 
to pH < 2 and stored at 4°C. The water samples and  
the plant extracts were analyzed by using AAS.

2.6 Statistical analysis

 Analysis of variance (ANOVA) and regression 
found in the Microsoft Office Excel 2007 software were 
used. Moreover, correlation matrix found in StatPlus 
(Excel add-in) was also used.

3. Results and Discussion

3.1 Metal contents in water

 The mean metal concentrations obtained for Cm 
(without heavy metal treatment and plants), C, T1, and 
T2 are presented in Table 2. The values from Table 2 
are used to calculate the removal efficiency by applying 
the formula as follows:

 R = [C0 - C1] × 100 / C0

 Where R = removal efficiency (%), C0 = initial 
metal concentration (mg/L), C1 =final metal  
concentration (mg/L).
 The histogram (Fig. 1) gives a visual picture that as 
the metal concentrations increased from C to T2, a lower 
removal of metals by WWS was observed. Correlation 
and regression analysis (p-values < 0.05) showed that 
there was a linear relationship between the two vari-
ables for Mn. However, the analysis (p-values > 0.05) 
showed that there was no linear relationship between 
the two variables for Cd. The results also indicated 
that the overall Cd removal by WWS was higher than 
that for Mn. The previous statement was supported by 
the curve slope values from the regression study. Cd 
had curve slope of 25.468, while Mn had curve slope 
of -28.713. The highest removals of Mn (48.65%) and 
Cd (56.03%) by WWS were in T1.
 The removal efficiency of Cd by WWS was  
comparatively lower than that by water hyacinth 
(Eichornia crassepes), i.e. 71.28% at low treatment  
concentration (Narain et al., 2011). The water lettuce 
(Pistia stratiotes) and water hyacinth (Eichornia 
crassepes) which were studied by Nur Zaida et al. 
(2012) had a higher (86%) removal efficiency of Cd  
than WWS at 0.5 mg/L. Two-way ANOVA indicated that 
there was sufficient evidence (F statistical = 250.478 >  
F critical = 3.885, and p-value = 0.0000000002 < 0.05) 
of a interaction effect between type of metal and  
treatment.

3.2 Metal contents in plant

 Table 3 shows the mean metal concentrations 
(μg/g) found in the dried sample of roots and shoots of  
WWS in natural pond, C, T1, and T2.
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 The results showed that both metals were more 
concentrated in WWS roots than shoots which agreed 
with the findings of Fritioff and Greger (2006) and 
Kumar et al. (2008). The metal concentrations varied 
in different parts of the plant as also shown by Li et al. 
(2015) and their findings revealed that the metal  
concentration was found to be highest in roots followed 
by stems and leaves. The highest Mn content was found 
in T2 for WWS roots and shoots with the concentrations 
of 9.696 and 8.787 μg/g, respectively; while the highest
content of Cd was also found in T2 for WWS roots and 
shoots with the concentrations of 10.947 and 9.687 
μg/g, respectively. The Cd content in roots was lower 
in WWS than in aquatic fern (17.5 μg/g) at 0.5 mg/L 
which was studied by Phetsombat et al. (2006). The 
precision and quality of the metal analysis procedure 
in plant samples were assessed by using peach leaves 
(SRM 1547) as the standard reference for plant  
material. Table 4 shows the Mn and Cd content detected 
in the peach leaves by AAS. The mean recoveries for 
Mn and Cd were 95.06 and 93.59%, respectively.

3.3 Water-to-shoot bioaccumulation factor (BAF) and 
root-to-shoot translocation factor (TF)

 Some of the metal concentration values in water 
and plant samples recorded in Tables 2 and 3 were  
obtained to calculate the BAF and TF values by  
applying the formula as follow:

 BAF = Cs / Cw (Yabanli et al., 2014)

 Where BAF = bioaccumulation factor, Cs = 
metal concentration in plant shoot (μg/g), Cw = metal  
concentration in water, (mg/L).

 TF = Cs / Cr (Hammad, 2011)

 Where TF = translocation factor, Cs = metal  
concentration in plant shoot (μg/g), Cr = metal  
concentration in plant root (μg/g).
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The removal efficiency of Cd by WWS was comparatively lower than that by water 
hyacinth (Eichornia crassepes), i.e. 71.28% at low treatment concentration (Narain et al., 
2011). The water lettuce (Pistia stratiotes) and water hyacinth (Eichornia crassepes) which 
were studied by Nur Zaida et al. (2012) had a higher (86%) removal efficiency of Cd than 
WWS at 0.5 mg/L. Two-way ANOVA indicated that there was sufficient evidence (F
statistical = 250.478 > F critical = 3.885, and p-value = 0.0000000002 < 0.05) of a interaction 
effect between type of metal and treatment.  

3.2 Metal contents in plant 

Table 3 shows the mean metal concentrations (µg/g) found in the dried sample of 
roots and shoots of WWS in natural pond, C, T1, and T2. 

Table 3. Metal concentrations detected in plant samples (mean ± SD, n = 3) 

Sample Concentration (µg/g) 
Natural pond C T1 T2 

Mn 
Root 0.172 ± 0.010 2.028 ± 0.065 9.280 ± 0.061 9.696 ± 0.077 
Shoot 0.076 ± 0.005 1.588 ± 0.093 7.413 ± 0.144 8.780 ± 0.133 

Cd 
Root 0.043 ± 0.005 ND* 5.816 ± 0.069 10.947 ± 0.215
Shoot ND* ND* 5.309 ± 0.045 9.687 ± 0.235 

ND*: Cd concentration was below the detection limit of AAS 

The results showed that both metals were more concentrated in WWS roots than 
shoots which agreed with the findings of Fritioff and Greger (2006) and Kumar et al. (2008). 
The metal concentrations varied in different parts of the plant as also shown by Li et al. (2015) 
and their findings revealed that the metal concentration was found to be highest in roots 
followed by stems and leaves. The highest Mn content was found in T2 for WWS roots and 
shoots with the concentrations of 9.696 and 8.787 µg/g, respectively; while the highest 
content of Cd was also found in T2 for WWS roots and shoots with the concentrations of 
10.947 and 9.687 µg/g, respectively. The Cd content in roots was lower in WWS than in 
aquatic fern (17.5 µg/g) at 0.5 mg/L which was studied by Phetsombat et al. (2006). The 
precision and quality of the metal analysis procedure in plant samples were assessed by using 
peach leaves (SRM 1547) as the standard reference for plant material. Table 4 shows the Mn 
and Cd content detected in the peach leaves by AAS. The mean recoveries for Mn and Cd 
were 95.06 and 93.59%, respectively. 

Table 4. Metal content detected in SRM (mean ± SD, n = 3) 

Metal Certified concentration (µg/g) Detected concentration (µg/g) Recovery (%) 
Mn 98.000 ± 3.000 93.160 ± 1.490 95.06 ± 1.520 
Cd 0.026 ± 0.003 0.024 ± 0.002 93.59 ± 7.798 

3.3 Water-to-shoot bioaccumulation factor (BAF) and root-to-shoot translocation factor (TF) 

Some of the metal concentration values in water and plant samples recorded in Tables 
2 and 3 were obtained to calculate the BAF and TF values by applying the formula as follow: 

BAF = Cs / Cw (Yabanli et al., 2014) 

Where BAF = bioaccumulation factor, Cs = metal concentration in plant shoot (µg/g), 
Cw = metal concentration in water, (mg/L). 

TF = Cs / Cr (Hammad, 2011) 



48

B. Teck Huat Guan et al. / EnvironmentAsia 10(1) (2017) 44-51

 The BAF and TF together with high specific 
growth rate, large specific surface area of the portion 
in contact with water, and high translocation potential 
are important assets for a plant species to be used for 
phytoremediation (Jasrotia et al., 2015). Table 5 shows 
the BAF and TF values of Mn and Cd for WWS.
 Bioaccumulation factor. Correlation analysis 
(p-value < 0.05) showed that there was a strong nega-
tive linear relationship between the two variables. In 
addition, the regression statistics confirmed with 95% 
confidence that for each degree increase of Mn treatment
concentration, the BAF values decreased between 
26.397 to 85.257. On the other hand, both the correlation 
and the regression analyses (p-values > 0.05) showed 
that there was no linear relationship between the two 
variables for Cd. 
 Nevertheless, the regression statistics showed that 
the overall BAF value of Cd (curve slope = -21.118) 
was higher than that of Mn (curve slope = -55.827). The 
highest BAF value for Cd was in T1 (115.035), whereas 
for Mn, it was in C (105.268). The two-way ANOVA 
indicated that the differences between the mean BAF 
values of the two metals were not the same for the three 
treatment concentrations (C, T1, and T2).
 Since the BAF values were more than 1, WWS 
is categorised as a good accumulator for Mn and Cd. 
The result of the high accumulation of Mn in WWS 
from this study was supported by that of Dummee  
et al. (2012) who found that the bioconcentration  

factor of  Mn was 95.07. However, WWS was less  
metal accumulative when compared to water lettuce  
(Eichhornia crassipes) (Lu et al., 2011) and hornwort 
(Ceratophyllum demersum) (Matache et al., 2013) 
which had BAF > 1000. The BAF of Cd was recorded 
as high as 622.3 and 653.0 in water hyacinth  
(Eichhornia crassipes) (Lu et al., 2004; Swain et al., 
2014) and 184.5 in water mimosa (Neptunia oleracea) 
(Wahab et al., 2014).
 Translocation factor. Both the correlation and the 
regression analyses (p-values < 0.05) indicated that 
there was a positive linear relationship between the two  
variables  for  Mn. The TF of  metals varied with  reference 
to the type of metal and the metal concentrations 
which was in agreement with Duman and Obali (2008) 
and Ndimele et al. (2014). Regression statistics also 
showed with 95% confidence that for each degree of 
increase in the treatment concentration, the TF values 
increased between 0.039 to 0.131.
 The TF values for Cd were slightly higher than 
those for Mn as confirmed by the curve values of Cd 
(1.244) and Mn (0.085) obtained from the regression 
tables. The TF value for Mn was highest in T2 (0.906), 
while for Cd, it was in T1 (0.913). The TF of Mn was
lower for WWS than water hyacinth (Eichhornia 
crassipes) (Hua et al., 2012) at high treatment  
concentration; but the TF of Cd was higher than that 
of 0.60 for shichito matgrass (Cyperus malaccensis) 
(Zhang et al., 2011).
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The removal efficiency of Cd by WWS was comparatively lower than that by water 
hyacinth (Eichornia crassepes), i.e. 71.28% at low treatment concentration (Narain et al., 
2011). The water lettuce (Pistia stratiotes) and water hyacinth (Eichornia crassepes) which 
were studied by Nur Zaida et al. (2012) had a higher (86%) removal efficiency of Cd than 
WWS at 0.5 mg/L. Two-way ANOVA indicated that there was sufficient evidence (F
statistical = 250.478 > F critical = 3.885, and p-value = 0.0000000002 < 0.05) of a interaction 
effect between type of metal and treatment.  

3.2 Metal contents in plant 

Table 3 shows the mean metal concentrations (µg/g) found in the dried sample of 
roots and shoots of WWS in natural pond, C, T1, and T2. 

Table 3. Metal concentrations detected in plant samples (mean ± SD, n = 3) 

Sample Concentration (µg/g) 
Natural pond C T1 T2 

Mn 
Root 0.172 ± 0.010 2.028 ± 0.065 9.280 ± 0.061 9.696 ± 0.077 
Shoot 0.076 ± 0.005 1.588 ± 0.093 7.413 ± 0.144 8.780 ± 0.133 

Cd 
Root 0.043 ± 0.005 ND* 5.816 ± 0.069 10.947 ± 0.215
Shoot ND* ND* 5.309 ± 0.045 9.687 ± 0.235 

ND*: Cd concentration was below the detection limit of AAS 

The results showed that both metals were more concentrated in WWS roots than 
shoots which agreed with the findings of Fritioff and Greger (2006) and Kumar et al. (2008). 
The metal concentrations varied in different parts of the plant as also shown by Li et al. (2015) 
and their findings revealed that the metal concentration was found to be highest in roots 
followed by stems and leaves. The highest Mn content was found in T2 for WWS roots and 
shoots with the concentrations of 9.696 and 8.787 µg/g, respectively; while the highest 
content of Cd was also found in T2 for WWS roots and shoots with the concentrations of 
10.947 and 9.687 µg/g, respectively. The Cd content in roots was lower in WWS than in 
aquatic fern (17.5 µg/g) at 0.5 mg/L which was studied by Phetsombat et al. (2006). The 
precision and quality of the metal analysis procedure in plant samples were assessed by using 
peach leaves (SRM 1547) as the standard reference for plant material. Table 4 shows the Mn 
and Cd content detected in the peach leaves by AAS. The mean recoveries for Mn and Cd 
were 95.06 and 93.59%, respectively. 

Table 4. Metal content detected in SRM (mean ± SD, n = 3) 

Metal Certified concentration (µg/g) Detected concentration (µg/g) Recovery (%) 
Mn 98.000 ± 3.000 93.160 ± 1.490 95.06 ± 1.520 
Cd 0.026 ± 0.003 0.024 ± 0.002 93.59 ± 7.798 

3.3 Water-to-shoot bioaccumulation factor (BAF) and root-to-shoot translocation factor (TF) 

Some of the metal concentration values in water and plant samples recorded in Tables 
2 and 3 were obtained to calculate the BAF and TF values by applying the formula as follow: 

BAF = Cs / Cw (Yabanli et al., 2014) 

Where BAF = bioaccumulation factor, Cs = metal concentration in plant shoot (µg/g), 
Cw = metal concentration in water, (mg/L). 

TF = Cs / Cr (Hammad, 2011) 
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Where TF = translocation factor, Cs = metal concentration in plant shoot (µg/g), Cr = 
metal concentration in plant root (µg/g). 

The BAF and TF together with high specific growth rate, large specific surface area 
of the portion in contact with water, and high translocation potential are important assets for a 
plant species to be used for phytoremediation (Jasrotia et al., 2015). Table 5 shows the BAF 
and TF values of Mn and Cd for WWS. 

Table 5. BAF and TF values for C, T1, and T2 (mean ± SD, n = 3) 

Treatment BAF TF 
Mn 

C 105.268 ± 8.016 0.782 ± 0.032 
T1 41.963 ± 0.507 0.799 ± 0.021 
T2 6.402 ± 0.058 0.906 ± 0.013 

Cd 
C NIL* NIL* 
T1 115.035 ± 4.828 0.913 ± 0.004 
T2 28.490 ± 0.153 0.885 ± 0.015 

NIL*: Zero value 

Bioaccumulation factor. Correlation analysis (p-value < 0.05) showed that there was 
a strong negative linear relationship between the two variables. In addition, the regression 
statistics confirmed with 95% confidence that for each degree increase of Mn treatment 
concentration, the BAF values decreased between 26.397 to 85.257. On the other hand, both 
the correlation and the regression analyses (p-values > 0.05) showed that there was no linear 
relationship between the two variables for Cd.  

Nevertheless, the regression statistics showed that the overall BAF value of Cd (curve 
slope = -21.118) was higher than that of Mn (curve slope = -55.827). The highest BAF value 
for Cd was in T1 (115.035), whereas for Mn, it was in C (105.268). The two-way ANOVA 
indicated that the differences between the mean BAF values of the two metals were not the 
same for the three treatment concentrations (C, T1, and T2).  

Since the BAF values were more than 1, WWS is categorised as a good accumulator 
for Mn and Cd. The result of the high accumulation of Mn in WWS from this study was 
supported by that of Dummee et al. (2012) who found that the bioconcentration factor of Mn 
was 95.07. However, WWS was less metal accumulative when compared to water lettuce 
(Eichhornia crassipes) (Lu et al., 2011) and hornwort (Ceratophyllum demersum) (Matache 
et al., 2013) which had BAF > 1000. The BAF of Cd was recorded as high as 622.3 and 653.0 
in water hyacinth (Eichhornia crassipes) (Lu et al., 2004; Swain et al., 2014) and 184.5 in 
water mimosa (Neptunia oleracea) (Wahab et al., 2014).  

Translocation factor. Both the correlation and the regression analyses (p-values < 
0.05) indicated that there was a positive linear relationship between the two variables for Mn. 
The TF of metals varied with reference to the type of metal and the metal concentrations 
which was in agreement with Duman and Obali (2008) and Ndimele et al. (2014). Regression 
statistics also showed with 95% confidence that for each degree of increase in the treatment 
concentration, the TF values increased between 0.039 to 0.131.  

The TF values for Cd were slightly higher than those for Mn as confirmed by the 
curve values of Cd (1.244) and Mn (0.085) obtained from the regression tables. The TF value 
for Mn was highest in T2 (0.906), while for Cd, it was in T1 (0.913). The TF of Mn was 
lower for WWS than water hyacinth (Eichhornia crassipes) (Hua et al., 2012) at high 
treatment concentration; but the TF of Cd was higher than that of 0.60 for shichito matgrass 
(Cyperus malaccensis) (Zhang et al., 2011).  

Two-way ANOVA showed that there was a significant interaction between the two 
variables because the F statistical value = 378.631 > F critical value = 3.885, and p-value = 
0.00000000001 < 0.05. The mobility of the metals in the plant was directly proportional to 
the TF value. It was observed that the TF values were less than 1 or smaller which was similar 
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 Two-way ANOVA showed that there was a  
significant  interaction  between  the  two  variables  because 
the F statistical value = 378.631 > F critical value 
= 3.885, and p-value = 0.00000000001 < 0.05. The 
mobility of the metals in the plant was directly  
proportional to the TF value. It was observed that the 
TF values were less than 1 or smaller which was similar 
with Uka et al. (2013), thus it was concluded that the  
movement of metals in WWS from roots to shoots was not  
effective which mostly characterised aquatic plants 
(Ansari et al., 2015). The translocation of metals from 
root to shoot could be governed by biotic and abiotic 
factors, plant species, and environmental conditions 
(e.g. pH, temperature, redox, salinity, and water ion 
content) (Kaewtubtim et al., 2016).
 Here, WWS functions as an excluder like other 
macrophytes such as reed (Phragmites australis) and 
cattail (Typha latifolia), which accumulated higher 
amounts of heavy metals in roots than shoots (Grisey  
et al., 2012). It is also known that WWS is not a  
hyperaccumulator for Mn and Cd because of the BAF 
was not more than 1000 (Xing et al., 2013). Although 
the BAF was > 1 and the TF was < 1, still it is a  
promising alternative for phytoremediation of heavy 
metal-contaminated water sources.

3.4 Uptake mechanisms in water spinach

 It is normal for Mn uptake to take place because 
Mn is a type of micronutrient required by the plant.  
On the other hand, Cd being taken might be due to a 
few possible reasons. According to Tran and Popova 
(2013), one of them could be that the non-essential 
Cd was carried by essential-metal transporters. In other 
words, it was being actively transported by a carrier that 
was able to bind with the metal and the process was 
driven by metabolic energy. It was also possible that 
Cd was being transported by the Zn and Ca pathways 
(Islam et al., 2015). The transport of Cd within the  
plant could also happen through passive transport where 
Cd followed the water transport system in the xylem. 
In addition, Cd in plant might be due to its adsorption 
onto the membrane surface and diffusion via the cell 
wall (Regier et al., 2013). Chekroun and Baghour (2013) 
reported that Cd uptake could occur via processes used 
by plants in detoxification or defense mechanisms, for 
example exclusion, compartmentalization, and binding 
with proteins (e.g. metallothioneins) and ligands (e.g. 
citrate, malate, oxalate, phytate, histidine, and nicoti-
anamine). The high amounts of Cd in the roots might 
be caused by vacuolar sequestration, insoluble salt 
precipitation, and phytochelatin complexation (Fontes 
et al., 2014). Large amounts of Cd being retained in the 

roots could be a type of defence mechanism to prevent 
the toxic element from being transported to the other 
parts of the plant.

4. Conclusions

 The uptake of Mn and Cd from water to the plant 
as indicated by BAF values decreased in the order C > 
T1 > T2 and T1 > T2, respectively. All the BAF values 
were found to be more than 1 which showed that WWS 
is a good accumulator for Mn and Cd. As for the move-
ment of Mn and Cd in the plant, to be precise, from 
root to shoot, indicated by TF values increased in the 
order C < T1 < T2 and T2 < T1, respectively. Higher 
metal content were accumulated in roots than shoots. 
However, it was observed that both metals moved less
freely (TF < 1). Since large amounts of Mn and Cd were 
accumulated in WWS as shown by this study, it will 
be interesting to investigate the bioavailability of the 
metals for absorption by the human body if this edible 
aquatic plant were to be consumed by humans.
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