

Long-Term Assessment of Daily Atmospheric Nitrogen Dioxide in Thailand Using Satellite Observed Data

Angsumarn Yimlamaid¹, Kotchakorn Suranowarath¹, Thongchai Kanabkaew², Pichnaree Lalitaporn^{1*}

¹Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Phaholyothin Rd., Ladyao, Jatujak, Bangkok, Thailand, 10900 ²Faculty of Public Health, Mahidol University, 420/1 Ratchathewi Rd., Ratchathewi, Bangkok, Thailand, 10400

*Corresponding: zupanida@gmail.com

Abstract

Nitrogen dioxide (NO₂) is one of the major air pollutants playing a key role in tropospheric chemistry and climate change. This study analyzed the long-term trend of daily tropospheric NO₂ columns in Thailand from 2007 to 2017 (11 years) retrieved from the SCIAMACHY, GOME-2A, GOME-2B and OMI satellites. The consistency between the satellites (GOME-2A vs. SCIAMACHY, GOME-2A vs. GOME-2B and GOME-2A vs. OMI) were investigated during the overlapped time period. Overall, the results showed a good agreement in seasonal variation. The satellite NO₂ data were also compared with ground data including NO₂ concentrations from ground monitoring stations and meteorological data (temperature, relative humidity and wind speed) over 6 regions of Thailand (North, Northeast, Central, East, Southwest and Southeast). The comparative analysis between satellites NO₂ columns and ground NO₂ concentrations presented well correlated results. NO₂ data from both satellite and ground measurements had maximum levels in the dry season (November-April) with the peak in March while the minimum levels were mostly observed in the wet season (May-October). Moreover, NO₂ generally presents at high levels when relative humidity (RH) levels are low.

Keywords: GOME; NO2; OMI; SCIAMACHY; Thailand

1. Introduction

In the past decades, increasing human activities have changed the tropospheric chemistry and the Earth's climate. Nitrogen dioxide (NO_2) is one of the major air pollutants (David and Nair, 2012; Cheng, *et al.*, 2012) released by anthropogenic sources, including industrial burning of fossil fuels (coal, oil and gas), transportation, biomass burning, and electricity generation (Melkonyan and Kuttler,

2012). NO₂ from natural sources, including forest fires, emits from soils through the decomposition process and lightning (Vinken, *et al.*, 2014). Tropospheric NO₂ is a major source of photochemical ozone (O₃). During daytime, NO₂ may react with hydroxyl radicals (OH) and become nitric acid (HNO₃) (Solomon, *et al.*, 1999; Valks, *et al.*, 2011).

The monitoring of ground-level NO₂ is conducted through ground measurements with in-situ data. The development of satellites

remote sensing observation of tropospheric NO₂ columns had starts since mid-1990s, including Global Ozone Monitoring Experiment (GOME) in 1995. It continued with the Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) in 2002, followed by the Ozone Monitoring Instrument (OMI) in 2004, and new version of GOME-2A in 2006 and GOME-2B in 2012 (Duncan, *et al.*, 2014; Wang, *et al.*, 2013; Callie, *et al.*, 2000; Richter, *et al.*, 2011).

Comparisons between ground measurements and tropospheric NO2 columns from satellites observations were done from in many researches. Zheng, et al., 2018 compared data from OMI satellite with the ground station observation in Inner Mongolia urban agglomerations. The result showed that NO₂ increased in 2005-2011 (14.3% per year) and decreased in 2011-2016 (-8.1% per year). Zhang, et al., 2016 also reported long-term trend (2005-2014) of OMI retrieved NO₂ concentrations in Henan province, China. The result showed the highest level in winter with the lower level in summer and spring. NO₂ continuously increased from 2005-2011 (6.4% per year), and thereafter decreased in 2012-2014 (10.6% per year). Jin, et al., 2016 compared data from MAX-DOAS measurement to OMI satellite in a rural site of North China. The result showed the maximum level in winter and minimum level in summer.

The data from tropospheric NO₂ satellites revealed long-term trends NO₂ concentration in China from 1997-2016, comparing between GOME vs. SCIAMACHY and SCIAMACHY vs. GOME-2A. The results indicated that correlation coefficient (R2) in four seasons were within 0.85-0.93 and 0.85-0.95, respectively (Zhang, *et al.*, 2018). This study focuses on the long-term trend of temporal variability of NO₂ columns retrieved from satellites (SCIAMACHY, GOME-2A, GOME-2B, and OMI) over six regions of Thailand during 2007-2017 (11 years). The relationship between NO₂ columns derived from satellites and meteorological data of the east of Thailand is focused because it is where most industrial estates located and anthropogenic NO_x emissions caused by human activities is also high in this area.

2. Materials and Methods

2.1. Satellites data

Satellites-based tropospheric NO₂ columns (unit: 1015molecules/cm2) used in this study were daily retrieved from SCIAMACHY (2007-2011), GOME-2A (2007-2017), GOME-2B (2013-2017) and OMI (2007-2017) over six regions of Thailand: north, northeast, central, east, southeast and southwest based on meteorology. Satellite data were published through the website of the Tropospheric Emission Monitoring Internet Service. More details of the satellites were presented in Table 1.

2.2. Ground monitoring data

Hourly data of NO_2 concentrations (ppb), temperature (°C), wind speed (m.s⁻¹) and relative humidity (%) during 2007-2016 were obtained from the Pollution Control Department (PCD), Thailand. The data were obtained during 2007-2017 over six regions of Thailand, including north (N) (12 stations), northeast (NE) (2 stations), central (C) (31 stations), east (E) (10 stations), southeast (SE) (4 stations) and southwest (SW) (2 stations); 61 stations of the PCD in total. Three-hour

Table 1. Characteristics of Saterines					
Sensor	SCIAMACHY	OMI	GOME-2A	GOME-2B	
Platform	ENVISAT	Aura	MetOp-A	MetOp-B	
Spectral range (µm)	0.23-2.38	0.27-0.50	0.24-0.79	0.24-0.79	
Ground pixel res.	60×30	24×13	80×40	40×40	
(km)					
Overpass local time	10.00	13.45	09.30	09.30	
Operating time	2002-2012	2004-present	2006-present	2012-present	

Table 1. Characteristics of Satellites

A. Yimlamaid / EnvironmentAsia 13 (Special issue) (2020) 1-9

Figure 1. Locations of grid boxes over Thailand

|--|

Region	Box	0.5×0.5° Box	Number of station/ Province
0	ID	(Lat, Lon)	
North	1	18.50-19.00°N, 98.75-99.25°E	2 stations in 2 provinces
			(Chiangmai and Lamphun)
-	2	18.00-18.50°N, 98.50-99.00°E	1 station in Chiangmai
-	3	18.00-18.50°N, 99.50-100.00°E	4 stations in Lampang
-	4	18.50-19.00°N, 100.50-101.00°E	1 station in Nan
-	5	19.00-19.50°N, 100.75-101.25°E	1 station in Nan
-	6	18.00-18.50°N, 100.00-100.50°E	1 station in Phrae
-	7	19.00-19.50°N, 99.75-100.25°E	1 station in Payao
-	8	16.50-17.00°N, 98.25-98.75°E	1 station in Tak
Northeast	9	16.25-16.75°N, 102.50-103.00°E	1 station in Khon Kaen
-	10	14.75-15.25°N, 101.75-102.25°E	1 station in Nakhon Ratchasima
Central	11	13.50-14.00°N, 100.25-100.75°E	23 stations in 3 provinces
			(Bangkok, Samut Prakan and Samut
			Sakhon)
-	12	13.50-14.00°N, 100.75-101.25°E	1 station in Samut Prakan
-	13	13.75-14.25°N, 99.25-99.75°E	1 station in Kanchanaburi
-	14	13.25-13.75°N, 99.50-100.00°E	1 station in Ratchaburi
	15	14.00-14.50°N, 100.25-100.75°E	2 stations in 2 provinces
			(Pathum Thani and Ayutthaya)
	16	14.25-14.75°N, 100.75-101.25°E	2 stations in Saraburi
	17	15.50-16.00°N, 100.00-100.50°E	1 station in Nakhon Sawan
East	18	13.50-14.00°N, 101.25-101.75°E	2 stations in 2 provinces
			(Chachoengsao and Prachinburi)
	19	13.00-13.50°N, 100.75-101.25°E	3 stations in Chonburi
	20	12.50-13.00°N, 101.00-101.50°E	5 stations in Rayong
Southeast	21	8.75-9.25°N, 99.00-99.50°E	1 station in Surat Thani
-	22	6.25-6.75°N, 101.00-101.50°E	1 station in Yala
	23	6.25-6.75°N, 101.50-102.00°E	1 station in Narathiwat
-	24	6.75-7.25°N, 100.25-100.75°E	1 station in Songkhla
Southwest	25	6.50-7.00°N, 99.75-100.25°E	1 station in Satun
	26	7.75-8.25°N, 98.00-98.50°E	1 station in Phuket

Figure 2. Long-term Satellites NO2 columns and ground NO2 concentrations over Thailand

ground NO₂ concentrations data from 9.00-12.00 were compared with data from three morning satellites (SCIAMACHY, GOME-2A and GOME-2B) and data from 13.00-15.00 were compared with data from OMI afternoon satellite. Twenty-six of 0.5°×0.5° grid boxes were set around the 61 PCD stations over six regions. The details and illustration of the locations were presented in Fig.1 and Table 2.

3. Results and Discussion

The results are presented in three parts. The first part is long-term trend observation of NO₂ columns retrieved from satellites and ground NO₂ concentrations over six regions of Thailand. The second and third parts, focusing on the east, present the comparison between NO₂ columns derived from satellites and ground data NO₂ concentrations and meteorology. The east is chosen as main focus of this study because several industrial estates are located in this region.

3.1 Time series of satellites and ground NO₂ data

Fig. 2 shows the comparison of monthly average of satellites and ground data of NO_2 over Thailand. In this study data from satellites retrieved from SCIAMACHY, GOME-2A, GOME-2B and OMI were compared with ground NO_2 concentrations over six regions of Thailand during 2007-2017 (11 years). The satellites capture the same trend of NO_2 concentration in this area. Observation of the north (N) area shows that maximum levels of ground NO_2 concentrations and NO_2 columns from satellites, caused by forest fires, are shown in January - March of every year. Observation of the northeast (NE) area indicates that biomass burning is the main cause of maximum levels

Figure 3. The scatter plots of ground NO₂ concentrations and satellite NO₂ columns (unit: 10¹⁵ molec.cm⁻²)

shown in January - April. The result were the similar to the form of biomass which increased during February - April and the highest level in March, Chiang Mai of Thailand from 2010-2014 (Punsompong and Chantrara, 2015). The central (C) and east (E) observation reveals that concentrations measured in both regions are in the same trend and the maximum levels in November - February. Moreover, in these areas, ground NO2 concentrations are at high levels because of a lot of traffic and industrial estates (Mavroidis and Chaloulakou, 2010). The possible causes of this trend are due to the amount of direct NO2 traffic emissions. As for the observation in the southeast and the southwest, it is shown that data from satellites and ground measurements are not related. There is only one ground station compared with the whole satellite grid box.

In the same way, the study of Lalitaporn, 2017, analyzing NO_2 columns observed from satellites and ground NO_2 concentrations over six regions of Thailand during 2008-2015

showed that the maximum levels of NO₂ columns were reported during the winter months (November - February). The previous studies in Turkey (Oner, *et al.*, 2016), China (Cui, *et al.*, 2016) and India (Ghude, *et al.*, 2008) also showed that the maximum levels of NO₂ columns derived from satellites were generally observed during summer, winter and dry season while the minimum levels were observed during fall, winter, summer and wet season.

Fig. 3 showed the scatter plots of ground NO₂ concentrations over six regions of Thailand and tropospheric NO₂ columns from SCAIAMCHY, GOME-2A, GOME-2B and OMI. Fig. 3 (N, NE, C and E) are NO₂ data from satellites of north, northeast, central and east of Thailand that show correlation coefficients (R) between 0.54-0.78, 0.64-0.73, 0.50-0.78 and 0.56-0.76 respectively. R-value greater than 0.5 indicates the consistency of data in the same direction. However, R-value from OMI observed were 0.31, 0.03, 0.24 and 0.18 respectively. This shows that NO₂ data were not

Figure 4. Consistency between (A) GOME-2A vs. SCIAMACHY (2007-2012), (B) GOME-2A vs GOME-2B (2013-2017) and (C) GOME2A vs. OMI (2007-2017), (units: 10¹⁵ molec.cm⁻²)

relevant. This can be explained by missing data of OMI during April – September of every year.

In Fig.3 (SE-SW) R-values of southeast and southwest were at 0.01-0.13 and 0.08-0.14 respectively and OMI data are not available. The low R-values is due to the low amount of ground data and probably due to variation of the meteorology.

3.2 The relationship between satellite data

The scatter plots between daily tropospheric NO_2 columns in the east shown in Fig. 4.

Fig. 4 (A, B) are the relationship between the NO₂ data retrieved from satellites with the local time in the morning which show that data characteristics tend to be in the same direction. R-values were 0.67 and 0.55 respectively; this represents the consistency of the data. In Fig. 4 (C), R-value was 0.18 representing inconsistency of the data because OMI retrieved in afternoon and GOME-2A retrieved in morning, the data was inconsistency and low number of OMI data (missing data in April – September).

3.3 Comparison of satellites data and meteorology

Tropospheric NO₂ columns in the East from SCIAMACHY, GOME-2B and GOME-2A were compared with monthly averages of meteorological factors including; temperature (° C), wind speed (m.s-1) and relative humidity (%) during 2007-2016 were presented in Fig. 5. The results show that temperature and wind speed are not the main causes of NO₂ level. Relative humidity is low when NO₂ is high. In wet season, when exposed to the sunlight, water vapor reacts with oxygen atoms (caused by photolysis of O₃) to form these OH radicals. They react with NO₂ to form HNO₃ (NO₂ + OH \rightarrow HNO₃) (Stavrakou, *et al.*, 2013).

4. Conclusion

Long-term trend and seasonal variation of NO2 over six regions of Thailand during 2007-2017 retrieved from satellites: SCIAMACHY, GOME-2A, GOME-2B and OMI, were compared with ground NO_2 concentrations. The maximum levels occur during the dry

season (November - April). The correlation coefficients (R) of NO_2 retried from satellites and ground measurements reveals that R of satellites data retrieved in morning, are greater than 0.5; this means both datasets, regarding to north, northeast, central and east are consistent. R of OMI in four regions are inconsistent because this satellite cannot detect NO_2 all year round. R of southeast and southwest are inconsistent. This I due to the lack of OMI data during April – September.

The relationship of NO₂ columns retrieved from satellites of the east was focused. The results show that the R of satellites retrieved in each morning are consistent because data were collected during the same period.

Comparison of data retrieved from satellites and meteorology focused on the east. The results show that temperature and wind speed are not the main causes of NO_2 level and NO_2 is high when relative humidity is low.

Acknowledgement

This research was funded by Kasetsart University Research and Development Institute (KURDI). SCIAMACHY, GOME-2B, GOME-2A and OMI NO₂ columns are available through the Tropospheric Emission Monitoring Internet Service (TEMIS) project website (http://www. temis.nl). Ground NO₂ concentrations data and meteorology data were provided by the Pollution Control Department of Thailand (PCD).

References/Bibliographies

- Callies J, Corpaccioli E, Eisinger M, Hahne A, Lefebvre A. GOME-2 – Metop's Second-Generation Sensor for Operational Ozone Monitoring. ESA Bulletin 2000; 102: 28–36.
- Cheng MM, Jiang H, Guo Z. Evaluation of long-term tropospheric NO₂ columns and the effect of different ecosystem in Yangtze River Delta. Procedia Environmental Sciences 2012; 13: 1045-1056.
- Cui Y, Lin J, Song C, Liu M, Yan Y, Xu Y, Huang B. Rapid growth in nitrogen dioxide

pollution over Western China, 2005–2013. Atmospheric Chemical and Physics. 2016; 16: 6207-6221.

- David LM, Nair PR. Tropospheric column O_3 and NO_2 over the Indian region observed by Ozone Monitoring Instrument (OMI): Seasonal changes and long-term trends. Atmospheric Environment 2013; 65: 25-39.
- Duncan BN, Prados AI, Lamsal LN, Liu Y, Streets DG, Gupta P, Hilsenrath E, Kahn RA, Nielsen JE, Beyersdorf AJ, Burton SP, Fiore AM, Fishman J, Henze DK, Hostetler CA, Krotkov NA, Lee P, Lin M, Pawson S, Pfister G, Pickering KE, Pierce RB, Yoshida Y, Ziemba LD. Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmospheric Environment 2014; 94: 647-662.
- Ghude, SD, Fadnavis S, Beig G, Polade SD, Van der A RJ. Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO₂ over India. Journal of Geophysical research 2008; 113: D20305, doi:10.1029/2007JD009615
- Jin J, Ma J, Weili L, Zhao H, Shaiganfar R, Beirle S, Wagner T. MAX-DOAS measurements and satellites validation of tropospheric NO_2 and SO_2 vertical column densities at a rural site of North China. Atmospheric Environment 2016; 133: 12-25
- Lalitaporn, P. Temporal and spatial variability of tropospheric NO₂ columns retrieved from OMI satellite data and comparison with ground base information in Thailand. Engineering and Applied Science Research 2017; 44: 227-234.
- Mavroidis I, Chaloulakou A. Long-term trends of primary and secondary NO₂ production in the Athens area. Variation of the NO₂/ NO_x ratio. Atmospheric Environment 2011; 45: 6872-6879
- Melkonyan A, Kuttler, W. Long-term analysis of NO, NO₂ and O₃ concentrations in North Rhine-Westphalia, Germany. Atmospheric Environment 2012; 60: 316-326.
- Oner E, Kaynak B. Evaluation of NO_x emissions

for Turkey using satellite and ground-based observations. Atmospheric Pollution Research 2016; 7: 419-430

- Punsompong P, Chantrara S. Pattern of biomass burning in Chiang Mai, Thailand and transportation of air pollutants in dry season. Proceedings of the 3rd EnvironmentAsia International Conference on Towards International Collaboration for an Environmentally Sustainable World; 2015 Jun 17-19; Bangkok, Thailand. Thai Society of Higher Education Institutes on Environment; 2015: 84-91.
- Richter A, Begoin M, Hilboll A, Burrows, JP. An improved NO₂ retrieval for the GOME-2 satellite instrument. Atmospheric Measurement Techniques 2011; 4: 1147-1159.
- Solomon S, Portmann RW, Sanders RW, Daniel JS, Madsen W, Bartram B, Dutton EG. On the role of nitrogen dioxide in the absorption of solar radiation. Journal of Geophysical Research 1999; 104: 12047-12058.
- Stavrakou T, Müller JF, Boersma KF, Van Der A. RJ, Kurokawa J, Ohara T, Zhang Q. Key chemical NO_x sink uncertainties and how they influence top-down emissions of nitrogen oxides. Atmospheric Chemistry and Physics 2013; 13: 9057-9082.
- Valks P, Pinardi G, Richter A, Lambert JC, Hao N, Loyola D, Roozendael MV, Emmadi S. Operational total and tropospheric NO₂ column retrieval for GOME-2. Atmospheric Measurement Techniques 2011; 4: 1491-1514.
- Vinken, GCM, Boersma, KF, Donkelaar AV, Zhang L. Constraints on ship NOx emissions in Europe using GEOS-Chem and OMI satellite NO₂ observations. Atmospheric Chemistry and Physics 2014; 14: 1353-1369.
- Wang B, Chen Z. An intercomparison of satellite-derived ground-level NO₂ concentrations with GMSMB modeling results and in-situ measurements A North American study. Environmental Pollution 2013; 181: 172-184.

- Zhang X., Zhang W, Lu X, Chen D, Liu L, Huang X. Long-term trends in NO₂ columns related to economic developments and air quality policies from 1997 to 2016 in China. Science of The Total Environment 2018; 639: 146-155.
- Zheng C, Zhao C, Li Y, Wu X, Zhang K, Gao J, Qiao Q, Ren Y, Zhang X, Chai F. Spatial and temporal distribution of NO₂ and SO₂ in Inner Mongolia urban agglomeration obtained from satellite remote sensing and ground observations. Atmospheric Environmental 2018; 188: 50-59.