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Abstract

This study aimed to evaluate the effects of future floods triggered by climate change reinforced 
extreme precipitation upon rice production with the case study of the highly rice cultivated 
District of Duc Tho in the North Central Region of Vietnam. 24 hour - extreme precipitation and 
its recurrence interval were identified by applying Probability Weighted Moment to Generalized 
Extreme Value distribution using historical daily observations and output of ensemble median 
of eight selected GCMs. The calculation was run under RCP2.6 with low climate sensitivity (best 
case) and RCP8.5 with high climate sensitivity (worst case). The predicted future precipitation 
data was then used for flood modeling and inundation calculation using hydrological models 
and GIS. An integrated method taking into account flood depth, inundation duration and 
crop calendar was then used for potential damage calculation. The results show that under the 
impact of climate change, extreme precipitation and floods would be intensified, and as floods 
become more intensified, deeper and longer, the loss they would cause to rice production would 
increase significantly. The loss in 2050s under the worst case would be 30.1% and under the best 
case would be 10.3% greater than that in the baseline period (1986-2005). The results of this 
study provide valuable scientific information for policy maker in long-term agricultural and 
infrastructural planning to minimize potential damages of future floods.
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1. Introduction

 Floods are among the world’s most  
frequent and damaging types of disaster.  
According to Daniell et al. (2016), over the 1900-
2015 period, over $7 trillion (2015-adjusted) in 
losses have occurred due to natural disasters, 
of which floods account for approximately 
40%. In developing countries, flood damage to  
agriculture is a great concern since large  
populations live in rural areas and mainly rely 
upon agriculture. Estimating flood damage to 
crops is therefore important for post-flood relief 
and recovery planning as well as for long-term  
adaptation and mitigation actions in the  
agricultural sector; however, this is a challenging 
task due to the complex interaction between 
flooding processes and crop systems, especially 
when climate change is considered. 

 A number of methods have been  
introduced to estimate flood damage to  
agricultural crops for different areas in the  
world. Dutta et al. (2003) developed a mathematical  
model for flood loss estimation in Japan  
combining a physically based distributed  
hydrologic model and a distributed flood loss 
estimation model. Flood damage curves were 
established for 8 types of crop (including dry 
crops, melon, paddy, vegetable with root, sweet 
potato, green leave vegetable, bean, and cabbage)  
based on depth and duration of inundation.  
A similar method using MIKE FLOOD  
hydrological model combined with damage 
curves was also applied by Vozinaki et al. (2012) 
and Kourgialas and Karatzas (2013) to study  
flood loss in Greece. Messner et al. (2007)  
introduced a set of methods for flood damage 
evaluation that included formulas to calculate  
total flood damage from a single event. The  

formulas used an approach for “what-if ’’  
analyses which estimated the flood damage 
when inundation and susceptibility data were  
available. Banerjee (2010) estimated the  
short-term and long-term impacts of extreme  
floods on agricultural productivity in  
Bangladesh using rice and jute productivity data.  
The short-term impact was assessed by comparing 
average annual yield rates in “normal” flood 
years with those in “extreme” flood years. The 
long-term impact was analyzed by comparing  
the cultivation area and the agricultural  
productivity in “more” and “less” flood-prone  
districts over a period of 20 years. Penning-  
Rowsell et al. (2013) used a depth-loss relationship  
to assess flood damage to the Taihu Basin, China. 
The depth-loss rate was established by asset 
categories and flood depth based on an existing 
“flood loss rate”, which is a percentage of the 
pre-flood property value at varying flood depths, 
and its associated flood damage data from past 
floods. The approaches are diversified and have 
led to different results. These studies, however, 
take into account floods alone; meanwhile the 
impacts of climate change were not considered. 

 Vietnam is a developing country where 
agriculture plays an important role in poverty 
alleviation and food security, and remains an 
important sector of the country’s economy as it  
contributes about 20% of GDP. However,  
agricultural production is frequently threatened  
by annual flooding, of which intensity, frequency 
and potential damage is predicted to increase 
under climate change impact (Pham et al., 2014). 
According to the United Nation Office for Di-
saster Risk Reduction (2009), Vietnam is among 
the countries most affected by floods. It is also 
ranked as the world’s second most vulnerable 
country to climate change (Standard and Poor’s,  
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2014). These pose a great concern for agricultural  
production in the near future. Among Vietnamese 
agricultural crops, rice is the most popular as 
it is grown throughout the country and is a 
major product for export. However, it is likely 
the most flood-affected crop due to its low-land 
cultivation location. The objective of this study  
is therefore to evaluate the loss of rice production 
due to climate change reinforced floods in 
Vietnam with a case study of the highly rice 
cultivated District of Duc Tho in the North 
Central Region, which would be valuable for 
policy makers in long-term agricultural and 
infrastructural planning to minimize potential 
damages of future floods to rice production.

2. Materials and Methods

 The approach for predicting future (2050s)  
economic losses of rice production due to climate  
change triggered flood damage involves prediction  
of extreme precipitation under different  
Representative Concentration Pathways (RCPs),  
simulation of flood inundation using hydrological 
model and calculation of flood damage based 
on inundation depth and duration using GIS. 
RCPs are four greenhouse gas concentration 
trajectories adopted by the Intergovernmental  
Panel on Climate Change (IPCC) for its fifth  
Assessment Report (AR5) in 2014. RCPs  
supersede Special Report on Emissions Scenarios 
(SRES) projections published in 2000. The four 
RCPs, RCP2.6, RCP4.5, RCP6, and RCP8.5, 
are named according to radiative forcing target 
level for 2100 relative to pre-industrial values 
(+2.6, +4.5, +6.0, and +8.5 W/m2, respectively) 
(Weyant et al., 2009). The four RCPs include one  
mitigation scenario leading to a very low forcing 
level (RCP2.6), two medium stabilization 
scenarios (RCP4.5/RCP6) and one very high 

baseline emission scenarios (RCP8.5) (IPCC, 
2014). In this study, RCP2.6 and RCP8.5 was 
used as they represent the best case and the 
worst case of climate change.

2.1. Prediction of extreme precipitation

 Future extreme precipitation was predicted  
for the decade of 2050s using historical  
precipitation data combined with Generalized 
Extreme Value (GEV) distribution and pattern  
scaling method following the approach  
introduced by Ye and Li (2011). The GEV 
function is a three-parameter function as the 
followings:   

F(x;σ,γ,μ) 

    = 
exp -{1+γ x-μ

σ }-1/γ , if 1+γ x-μ
σ  > 0, γ ≠ 0 

exp -exp -x-μ
σ } , if x R, γ = 0

            

                  (1)

 where σ and μ (μ  R and σ > 0) are the 
scale and location parameters, respectively. γ 
is the shape parameter which determines the 
type of GEV distribution. There are three types 
of distribution called Fréchet, Gumbel, and 
Weibull corresponding to γ < 0, γ = 0, and γ > 
0, respectively. In this study, long-term historical 
rainfall daily data date back to more than 50 
years with volume resolution of 0.1mm were 
employed for GEV analysis. The GEV function 
parameters for the General Circulation Model  
(GCM) baseline and future periods were  
estimated using the Probability Weighted  
Moments (PWM) method (Landwehr et al., 1979) 
for each GCM grid (x,y). In this study, eight  
GCMs from the Coupled Model Intercomparison 
Project Phase 5 (CMIP5) archive (which  is  also  
the  data  source  for  IPCC  AR5  climate change   
projections) were employed and ensemble  
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Table 1. List of GCMs used for climate change projection in this study 

No CMIP5 
Models

Developer atmospheric 
variable

ocean  
variable

Vintage Reference

1 ACCESS1-3 CSIRO and Bureau 
of Meteorology, 
Australia 

192*145 360*300 2011 Bi et al., 2013;  
Dix et al., 2013

2 CESM1-BGC NSF-DOE-NCAR, 
USA

288*192 320*384 2010 Long et al., 2012; 
Hurrell et al., 2013

3 CMCC-CM Centro Euro- 
Mediterraneo per 
I Cambiamenti 
Climatici, Italy

480*240 182*149 2009 Fogli et al., 2009; 
Scoccimarro et al., 
2011

4 CNRM-CM5 CNRM and CER-
FACS, France

256*128 362*292 2010 Voldoire et al., 2013

5 HadGEM2-ES Met Office Hadley 
Centre, UK

192*145 360*216 2009 Collins et al., 2011; 
Martin et al., 2011

6 INMCM4 Institute for  
Numerical  
Mathematics, Russia

180*120 360*340 2009 Volodin et al., 2010

7 MIROC5 UTokyo, NIES, and 
JAMSTEC, Japan

256*128 256*224 2010 Watanabe et al., 2010

8 MRI-CGCM3 Meteorological 
Research Institute, 
Japan

320*160 360*368 2011 Yukimoto et al., 2012

Resolution (long*lat)

median of the selected GCMs was used. Employing 
multiple ensemble members helps to reduce 
bias prediction of each single member GCM. 
The selection of GCMs was principally based 
on the spatial resolution of the GCMs. In each  
GCM family, only one GCM with highest  
resolution was selected. A list of GCMs employed 
is presented in Table 1.

2.2. Inundation modeling

 The predicted extreme precipitation  
derived from GEV analysis and pattern scaling 
method was then used for inundation modeling  
using MIKE FLOOD model. The Model  
integrates the one-dimensional model MIKE 11 
and the two-dimensional model MIKE 21 into 

a single, dynamically coupled modeling system. 
This coupled tool exploits the best features of 
both MIKE 11 and MIKE 21. Lateral links are  
used, enabling the overbank flow simulation  
between the river channel and the floodplain 
area. A lateral link allows a string of MIKE 21 
cells to be laterally linked to a given reach in 
MIKE 11, either a section of a branch or an entire 
branch. The maximum floodwater depth and 
duration, which were estimated at every MIKE 
FLOOD model grid node, was subsequently  
used as input to a flood loss model for the  
estimation of damage to rice production. In this 
study, the MIKE FLOOD model was previously 
calibrated and validated for the study area by 
Pham et al. (2016).

P. Q. Giang and T. T. Phuong / EnvironmentAsia 11(3) (2018) 65-78
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2.3. Prediction of economic loss of rice  
 production 

 The flood loss model for rice uses the 
equation below:    

 LOSSRice(xy) = ARice(xy) × YRice × CRice × ERice 

   (Ht) × LFRice                    (2)

 TLOSSRice = ∑x=1,y=1
m,n  LOSSRice(xy)          (3)

Where: LOSSRice (xy) is economic loss of rice due 
to flood in grid xy (VND)

  TLOSSRice is the total economic loss of 
rice (VND)

  ARice(xy) is cultivation area of rice in grid 
xy (m2)

  YRice is estimated yield of rice per unit 
area (kg/m2)

  CRice is estimated cost per unit weight 
of rice product (VND/kg)

  ERice(Ht) is loss coefficient for rice  
corresponding to depth H and  

  duration t at grid xy (%)

  LFRice is loss factor, taking into account 
of growing season of rice (%). In this 
study, the loss factor is assumed to be 
100% as the flood season in the study 
area (August-November) covers the 
haversting season of rice (August-Sep-
tember).

 The loss coefficient E is calculated based  
on a stage-damage function, which is the  
exponential function E = F(t)= a.e b*t, where E 
is the loss coefficient in percentage (E≤ 100%), t 
is the duration of inundation (days), e is Euler’s 
number equal to 2.71828; a and b are coefficients 
determined for each water depth level. In this 
study, flood water depth (H) was devided into 
three levels: 0.2m < H ≤ 0.5 m; 0.5 < H ≤ 1.0 m; 
and H > 1.0 m. Our assumption is that the flood 
water shallower than 0.2 m caused no damage to 
rice. The coefficient a and b are shown in Table 2. 

Table 2. Coefficients of Stage-damage function

Flood depth a b R2

0.2m < H ≤ 0.5 m 12.17 0.195 0.988
0.5 < H ≤ 1.0 m 28.07 0.163 0.964

H > 1.0 m 39.16 0.130 0.956

P. Q. Giang and T. T. Phuong / EnvironmentAsia 11(3) (2018) 65-78
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2.4. The study area

 The introduced approach was applied to 
the case study of Duc Tho, a rural district of 
Ha Tinh Province in the North Central region 
of Vietnam and is a part of the Ca River Basin 
(CRB), which is one of the largest river basins  
in Vietnam. The district covers an area of  
approximately 203.5 Km2 and has a population 
of more than 105,000 people (as 2016). The 
North Central Region in general and Duc Tho in 
particular is well-known as a hotspot of flooding 
in Vietnam due to high frequency and severity  
of floods occurring in the region. Geographic  
location of Duc Tho district is presented in  
Figure 1. In Duc Tho district, rice is the leading  
crop in terms of both cultivation area and  
production. Approximately one third of the 
area of the district is used for rice cultivation,  
producing more than 56,000 tons of rice  
annually (DSO, 2016). Rice is grown three crops  
a year which are called Winter-Spring crop (early 
November to mid April), Summer-Autumn crop 
(early May to late September) and October crop 
(mid May to mid November) and the main flood 
season is from early August to late November. 
The haversting time of the Summer-Autumn 
rice and October rice falls into the flood season,  
the risk of damage is therefore very high. A  
characteristic of floods in Duc Tho is that  
because the district is located in the downstream  
area and its topography is generally flat, the  
velocity of flood is weak and is therefore  
neglected in calculation of damage in this study. 

3. Results and Discussion

3.1. Change in extreme precipitation

 Figure 2 shows both the baseline GEV 
distribution and the 2050s GEV distribution 
under RCP2.6 and RCP8.5 projected by the 
ensemble median of the eight selected GCMs 
for 24-hour extreme precipitation at Linh Cam 
meteorological station.

 From Figure 2 it can be clearly seen that  
compared to the baseline period, extreme  
precipitations at all level become more intensified 
or more frequent in the future under climate 
change impact. However, all the projected 
changes under RCP8.5 (with high climate 
sensitivity) are clearly much larger than those 
under RCP2.6 (with low climate sensitivity). The 
distance between the lines of observed GEV and  
GCM projected GEV functions becomes  
enlarged towards the upper tail of the distribution 
indicates an even stronger climate change effects  
when the precipitation event becomes more  
extreme, especially under RCP8.5. This pattern 
of precipitation change derived from application 
of GCMs in combination with Pattern Scaling 
and GEV methods was discussed in Ye and Li 
(2011). For Duc Tho district specifically, for an 
average extreme precipitation (EP) level, the 
baseline intensity of the 20 year-return period 
EP was 446 mm and changed to 470 mm and  
575 mm under low and high RCP projection  
scenarios respectively, which represent a potential 
range of intensity increase between 5.4% and 
28.9%. The frequency of the 20 year-EP level of  
baseline changed to 16 years and 10 years under 
the low and high RCP projection scenarios 
respectively, which are significant frequency 
increases between 20 to 50%. 

P. Q. Giang and T. T. Phuong / EnvironmentAsia 11(3) (2018) 65-78
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Figure 1. Geographic location of the study area
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Figure 2. Prediction of extreme precipitation under RCP2.6 and RCP8.5

3.2. Change in flood water level

 The change in water level was calculated 
for Linh Cam, the main hydrological station in  
Duc Tho district. Figure 3 shows an obvious  
increase in water level under both RCP projection 
scenarios (in 2050s) compared with the baseline 
period. The peak water level was predicted to 
increase from 6.49m in the baseline period to 
6.64m and 7.09m in 2050s under RCP2.6 and 
RCP8.5 scenarios respectively, meaning that a 

potential range of increase between 0.15 to 0.6m 
is expected. The enlarged distance between both 
of RCP2.6 and RCP8.5 curves and the baseline 
curve also indicates that the flood event would 
last longer under the impact of climate change, 
especially under RCP8.5 scenario. A similar 
pattern of change in flow regime of rivers in the 
Ca River Basin under climate change impacts 
was also previously found and discussed in 
Pham et al. (2014).     

Figure 3. Water level at Linh Cam in the baseline period and in 2050s

P. Q. Giang and T. T. Phuong / EnvironmentAsia 11(3) (2018) 65-78
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3.3. Economic loss of rice production

 Maps of inundation depth and inundation 
duration were interpolated from data of 
maximum depth and total duration at mesh grid 
of the MIKE flood model and are presented in 
Figure 4 and Figure 5. The area of inundation 
in the baseline period was 1170.26 ha, accounting 
for 57.74% of the total area of the district. 
Under climate change reinforcement, the area 
of inundation would increase to 12261.32 ha 
and 12982.38 ha according to scenarios RCP2.6 

and RCP8.5, respectively. The increase in area 
of flood inundation due to climate change 
reinforcement was a common prediction among 
the scientific community and was reported by 
recent studies (Pham et al., 2012; Shrestha and 
Lohpaisankrit, 2017). 

 The area of inundation upon rice cultivation 
was calculated by overlaying the map of 
inundation and land use map. The loss of rice 
production was calculated using the stage-
damage function for every map grid (previously 
presented in Table 2) and is shown in Figure 6. 

Figure 4. Inundation depth under baseline, RCP2.6 and RCP8.5 scenarios

Figure 5. Inundation duration under baseline, RCP2.6 and RCP8.5 scenarios

P. Q. Giang and T. T. Phuong / EnvironmentAsia 11(3) (2018) 65-78
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Figure 6. Loss of rice in percentage due to flooding under baseline, RCP2.6 and RCP8.5 scenarios

 Figure 7 shows the area of rice inundated, 
the corresponding rice production affected, and 
the consequent economic loss of rice production. 
The area of rice cultivation inundated in the 
baseline period was 5565.21 ha and would 
increase to 5855.12 ha (an increase of 5.2%) and 
6649.15 ha (an increase of 19.5%) ha in 2050s 
under scenarios RCP2.6 and RCP8.5, respectively. 
With a yield of 5 tons/ha and a price of 6 million 
VND/ton (as in 2016), the production of rice 
affected by floods would increase from 27827.05 
tons in the baseline period to 29275.6 tons and 
33247.75 tons; and the economic loss would 
increase from 150.87 to 166.23 billion VND (an 
increase of 10.3%) and 196.28 billion VND (an 
increase of 30.1%) under scenarios RCP2.6 and 
RCP8.5, respectively (Figure 7). 

 The increase in the economic loss of rice 
production was found to be not proportionate 
to the increase in the area of inundation due to 
additional effect by the increase in inundation 
duration. The results clearly indicate that as 
floods become more intensified, deeper and 
longer under the impact of climate change, the 

loss they would cause to rice production would 
increase significantly, especially under the high 
concentration scenario RCP8.5.

 It is obvious that in addition to flood season, 
depth and duration, flood damage depends on 
many other factors such as flood flow velocity, 
sediment concentration, contamination of flood 
water, availability and information content 
of flood forecast, and the quality of external 
response in a flood situation. Although a few 
previous studies provided some quantitative 
hints about the influence of these factors 
(Penning-Rowsell and Green, 2000; Thieken 
et al., 2005), there is no comprehensive approach 
for including all of such factors in damage 
evaluation. Most of studies on crop damage take 
into account flood season, depth and duration 
(Bremond et al., 2013) while other factors are 
neglected since they are very heterogeneous in 
space and time, difficult to predict, and there 
is limited information on their effects. This is 
also a limitation of the present study and more 
investigations on the effect of those factors are 
recommended for further research.
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Figure 7. (a) Inundated area, (b) production affected and (c) economic loss of rice production 
under the baseline period and in 2050s RCP2.6 and RCP8.5 scenarios.

4. Conclusion and Recommendation

 Vietnam is among the countries most 
affected by floods and most vulnerable to climate 
change. In Vietnam, flood damage to rice 
production is a great concern since large 
populations mainly rely upon rice production 
and rice is a major product for export. Projection 
of the effects of climate change on economic 
loss due to flood damage to rice production in 
Vietnam with the case study of Duc Tho, a 
district in its north-central region, was 
conducted using an integrated methodology. 
Extreme precipitation was estimated by applying 
Probability Weighted Moment to Generalized 
Extreme Value distribution using historical daily 
observations and output of ensemble median of 
eight selected GCMs. The calculation was run 

under two Representative Concentration 
Pathways: RCP2.6 with low climate sensitivity 
(best case) and RCP8.5 with high climate 
sensitivity (worst case). The predicted future 
precipitation data was then used for flood 
modeling and inundation calculation using 
hydrological models and GIS. An integrated 
method taking into account flood depth, 
inundation duration and crop calendar was 
then used for potential damage calculation. 
The results show that under the impact of 
climate change, extreme precipitation and floods 
would be intensified, and as floods become 
more intensified, deeper and longer, the loss 
they would cause to rice production would 
increase significantly. The loss under the worst 
case (RCP8.5) is much larger compared to the 
best case (RCP2.6).

P. Q. Giang and T. T. Phuong / EnvironmentAsia 11(3) (2018) 65-78
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 The results of this study prove that the  
integrated approach introduced is a powerful  
tool for the prediction of flood damage under  
climate change impact and is capable of 
providing useful information for flood risk 
management and decision-making. The results 
are valuable for long-term agricultural and 
infrastructural planning in order to minimize 
potential damages of future floods, especially in 
the worst case of climate change.
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